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Abstract: We investigate the distribution of field theories that arise from the low energy

limit of flux vacua built on type IIB string theory compactified on the mirror quintic. For

a large collection of these models, we numerically determine the distribution of Taylor

coefficients in a polynomial expansion of each model’s scalar potential to fourth order, and

show that they differ significantly from potentials generated by random choices of such

coefficients over a flat measure.
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1 Introduction

The enormous number of vacua scattered throughout the string landscape poses one of

the most significant challenges for making contact between string theory and observable

physics. Generally speaking, three approaches for tackling this challenge have been ad-

vanced. The first focuses on the distribution of string vacua within the moduli space of

geometrical compactificaitons, seeking mathematical structure that might entail patterns

in physical observables emerging from the low energy sector of the theory. Seminal pa-

pers of this sort are [1–4]. A second approach has been to model the collection of low

energy models arising from string compactifications as a space of random quantum field

theories, with coefficients of all renormalizable terms drawn from a random distribution of

perturbatively sensible values over a flat measure. The papers [5–10] illustrate the types of

conclusions that can be drawn using this approach. The third approach combines aspects

of the the first two by investigating the space of low energy field theories arising from

string compactifications, and determining the degree to which this space is well modeled

by random field theories drawn from a flat measure. That is, the third approach seeks

nontrivial structure in the space of low energy string dynamics which can then be used to

sharpen conclusions drawn from the first two approaches noted above. Examples of this

approach include [11–14]. In this paper, we push forward on this third approach.
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The third approach involves two competing influences. The starting point for low en-

ergy string dynamics, for definiteness type IIB supergravity in ten dimensions, is surely

a theory which enjoys a great deal of structure. As we compactify this theory, preserv-

ing various amounts of low energy supersymmetry, we inject additional structure such as

the rich topology and geometry of Calabi-Yau compactifications. At the same time, the

distribution of low energy string dynamics arising from such compactifications becomes

substantially broader as masses and couplings depend sensitively on the detailed topolog-

ical and geometrical data of the compact manifold. This becomes all the more apparent

when we adorn our compactifications with branes and fluxes, which introduce yet more

degrees of freedom on which low energy properties depend. Collectively, then, one might

imagine that notwithstanding the structure of supergravity and string geometry, the im-

pact of varying the choices of fluxes in conjunction with the distinct locations of the vacua

in moduli space associated with each such flux choice, would result in the low energy field

theories arising from string theory being essentially random. As above, various authors,

(those following “approach two”) have indeed relied on this perspective.

Nevertheless, papers in approach three have noted that even with the statistical ten-

dency toward flattened distributions, residual structure in the the low energy dynamics can

persist. For example, [3, 10] have shown that the distribution of mass eigenvalues fill out

a non-random, and by now well-understood, mathematical pattern. The purpose of the

current paper is to push this perspective further by considering higher order coefficients

beyond the Hessian, and to determine the degree to which these terms are well-modeled

– or not – by a random distribution over a flat measure. We will argue that, much as

was found for mass eigenvalues, the third and fourth order terms in the low energy scalar

potential retain non-random structure.

The analysis leading to this result is conceptually straightforward, albeit computa-

tionally technical. We begin in section 2 by providing background on the various elements

required for understanding low energy string dynamics arising from flux compactifications,

focusing for definiteness on the mirror of the quintic hypersurface in CP4. We include this

material for completeness and to set up notation; the reader familiar with the geometrical

machinery of flux compactifications can skip the first three subsections of this discussion.

The fourth and final background subsection, 2.4, reviews how flux compactifications give

rise to a particular pattern of mass eignenvalues, illustrating in the simplest setting the

kind of mathematical features relevant for the third approach. In section 3 we lay out

our calculational approach for generating a sample set of flux vacua, for computing the

form of the low energy Lagrangian describing small fluctuations about such vacua up to

fourth order, and for comparing these Lagrangians to those emerging from a random set of

theories drawn from a flat measure. In section 4 we provide our results and, in particular,

reveal nontrivial structure in the third and fourth order coefficients. Finally in section 5

we summarize our results and suggest further directions for study.
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2 Background

2.1 Review of Flux Compactifications

The low energy dynamics of the type IIB string is governed by the type IIB supergravity

action, which provides our starting point [15],

SIIB =
2π

`8s

[∫
d10x

√
−g10R10 − 1

2

∫
dτ ∧ ∗dτ̄
(Im(τ))2

+
G(3) ∧ ∗Ḡ(3)

Im(τ)
+
F̃ 2

(5)

2
+ C(4) ∧H(3) ∧ F(3)

]
+Sloc,

(2.1)

where R10 is the 10d Ricci Scalar in the Einstein frame, G(3) is the combined 3-form flux,

G(3) = F(3) − τH(3), (2.2)

τ is the axio-dilaton related to the dilaton, φ, by

τ = C(0) + ie−φ (2.3)

and F(p) and H(3) are obtained from potentials C(p−1) and B(2),

F(p) = dC(p−1) (2.4)

H(3) = dB(2). (2.5)

This theory can be compactified on a Calabi-Yau 3-fold to yield an effective action for

the moduli fields, which describe how the compact manifold M varies from one spacetime

location to another in the four large dimensions. Such parameters are complex valued and

change continuously across the given family of Calabi-Yau, so they enter the 4d theory

as complex scalar fields. It is instructive to sketch the derivation of the effective action,

and give a very brief review of the geometry of Calabi-Yau moduli spaces. In the process

we introduce notation and summarize our strategy for generating an ensemble of random

effective field theories. Experienced readers may wish to skip this section.

Calabi-Yau moduli come in two different types: those associated with deformations

of the manifold’s complex structure, and those associated with deformations of its Kähler

form, J . The former are in one-to-one correspondence with elements of the (2, 1)-de Rham

cohomology group, H(2,1)(M), and the latter with H(1,1)(M). We denote the dimension

of these vector spaces by their Hodge numbers, h2,1 and h1,1, respectively.

Complexifying the Kähler form, we deal with a moduli space of complex dimension

h(2,1) + h(1,1), itself a Kähler manifold that factors locally into the direct product of two

separate Kähler manifolds: one spanned by the complex structure moduli and the other

spanned by the complexified Kähler moduli, with Kähler potential of the form,

Kcs(z1, z2, ..., zh
2,1

) +Kka(w1, w2, ..., wh
1,1

). (2.6)

Lower case indices (a, b, c, ...) will refer to Calabi-Yau moduli. They are ordered from 1 to

h2,1 + h1,1 running through all the complex structures first, followed by those of Kähler

type. However, their range in certain expressions may be restricted to moduli of one of
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the two types. Most often this will be obvious from the context, but where there is the

possibility for ambiguity we will state which if any moduli are excluded.

The Kähler potential for the complex structure moduli is,

Kcs(z1, ..., zh
2,1

) = − log

(
−i
∫
M

Ω ∧ Ω̄

)
(2.7)

where Ω is the holomorphic three-form of the Calabi-Yau manifold. It can be shown that

differentiating Ω with respect to any of the complex structure moduli yields a component

proportional to Ω, and a remaining closed (2, 1)-form. That is,

∂Ω

∂za
= kaΩ + χa (2.8)

with χa ∈ H(2,1)(M). In particular the proportionality constant ka turns out to be,

ka = −Ka = −∂aK. (2.9)

This allows us to construct a basis for H(2,1) by acting on the holomorphic 3-form with

a Kähler covariant derivative, Da, whose action on Ω is defined by,

DaΩ ≡ χa = ∂aΩ +Kcsa Ω. (2.10)

Furthermore, since ∫
M

Ω ∧ ∂Ω

∂za
= 0, (2.11)

such (2, 1)-forms are orthogonal to Ω.

We can now compute the term proportional to G(3) ∧ ∗Ḡ(3) in the supergravity action

upon compactification. This process amounts to taking the 10d spacetime to be the direct

product of a four dimensional (noncompact) Lorentzian manifold, M4, and a compact

Riemannian one, M, which for us is a Calabi-Yau 3-fold. We write,

M10 = M4 ×M(z1, ..., zh
2,1
, w1, ..., wh

1,1
), (2.12)

and perform the integration over M in the action. Since M is parameterized by the

aforementioned moduli, and since the Calabi-Yau are allowed to vary across locations in

M4, performing the integral over M will yield an effective field theory involving moduli

fields, φa(xµ).

Requiring Poincaré invariance in M4 implies only G(3)’s components with all indices

in the compact dimensions may be nontrivial, and so∫
M
G(3) ∧ ∗Ḡ(3) =

∫
M
G(3) · Ḡ(3). (2.13)

This is essentially a norm of a (for now general) closed 3-form onM. We may expand G(3)

and Ḡ(3) in an orthogonal basis for

H(3)(M) = H(3,0)(M)⊕H(2,1)(M)⊕H(1,2)(M)⊕H(0,3)(M), (2.14)
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namely,

Ω , {χa}h
2,1

a=1
, {χ̄a}h

2,1

a=1
and Ω̄ (2.15)

allowing us to write,∫
M
G(3) · Ḡ(3) =

i∫
MΩ ∧ Ω̄

(∫
M
G(3) ∧ Ω̄

∫
M
Ḡ(3) ∧ Ω +Kab̄

∫
M
G(3) ∧ χ̄a

∫
M
Ḡ(3) ∧ χb

)
.

(2.16)

Each of these can be expressed in terms of covariant derivatives of the Gukov-Vafa-

Witten superpotential, W , defined in terms of the (3)-form flux as,

W (z, τ) =

∫
M

Ω ∧G(3). (2.17)

The second term on the right hand side of eq. 2.16 involves Kähler covariant derivatives

of the superpotential with respect to the complex structure moduli (because it is built out

of (2, 1)-forms). It is proportional to,

Kab̄DaWD̄b̄W̄ . (2.18)

As is standard, we can define a “Kähler potential” for the axio-dilaton such that the

first term in on the right hand side of eq. 2.16 has the same form as eq. 2.18, i.e. so it is

∼ |DτW |2. Specifically, we choose

Kax = − log(−i(τ − τ̄)), (2.19)

and

Kaxτ τ̄ = (Kaxτ τ̄ )−1 = (∂τ∂τ̄Kax)−1. (2.20)

One makes this choice because

1

(τ̄ − τ)

∫
G(3) ∧ Ω̄ =

(
∂τ −

i

τ − τ̄

)
W = (∂τ + ∂τKax)W ≡ DτW, (2.21)

and so first term in 2.16 is proportional to

|DτW |2 = Kaxτ τ̄DτWD̄τ̄W̄ , (2.22)

which parallels the form arising for the other complex structure moduli, reflecting the rela-

tionship of type IIB string theory to F-theory in which the axio-dilaton explicitly becomes

another complex structure modulus.

Notationally, to include the axio-dilaton as as additional modulus we use new indices

– capital letters – that begin from zero, the index value reserved for the axio-dilaton. We

denote the full Kähler potential by K. It is the sum of all three pieces, Kcs, Kax and Kka.
The result, then, of dimensionally reducing the 3-form flux term is

2π

`8s

i

2Im(τ)
∫
MΩ ∧ Ω̄

KIJ̄DIWD̄J̄W̄ =
2π

`8s
eK

cs+KaxKIJ̄DIWD̄J̄W̄ (2.23)

where the Kähler moduli are excluded.
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The kinetic terms for all the Calabi-Yau moduli come from the Einstein Hilbert term in

the 10d action. They are noncanonical. We identify where they come from as well compute

the total relative factor between the kinetic and potential terms which will involve one

remaining expression given in terms of the volume of the compactification manifold. This

is meant as a qualitative description. First we decompose the 10d curvature scalar into the

trace of the noncompact component of the Ricci tensor, that of the compact component

(which is zero because Calabi-Yaus are Ricci flat), and the remaining terms which will

involve products of the metric and its derivatives with indices in both the compact manifold

and large dimensions, which we label Rmix,

R10 = R4 +R6 +Rmix. (2.24)

Since R4 is a constant over the Calabi-Yau, integration of it over M yields a factor of

the volume of the Calabi-Yau. The factor then in front of the resulting 4d Einstein-Hilbert

term is
2π

`8s
Vol(M) =

2π

`2s
V0 =

M2
p

2
4πV0 (2.25)

where we’ve defined the dimensionless constant V0, the volume of the Calabi-Yau manifold

in string units. Since the string length is the fundamental length scale at which one will

see string modes, the volume of the Calabi-Yau must be large compared to `6s for the direct

compactification procedure we are employing to be valid.

In order to have a canonical Einstein-Hilbert term in the effective action one must

rescale the 4d metric so that the curvature rescales precisely with a factor of 1
4πV0 . The new

curvature term also comes with kinetic terms for the volume modulus because the volume,

and thus the factor by which the 4d spacetime metric is rescaled, may be expressed in

terms of the volume modulus, ρ. 1

Incidentally, the term in eq. 2.1 which clearly yields kinetic terms for the axio-dilaton,

namely,

∼
∫
dτ ∧ ∗dτ̄
(Im(τ))2

, (2.26)

arises in precisely the same manner; specifically from transforming from the string metric

to the Einstein metric by rescaling the string metric by eφ/2. The resulting kinetic terms

for ρ and τ are noncanonical, specifically given by,

M2
p

2

∫
d4x

3

(ρ− ρ̄)2
∂µρ∂

µρ̄+Kaxτ τ̄∂µτ∂µτ̄ (2.27)

ρ is not itself one of the Calabi-Yau moduli denoted by our indices a, b, ... Rather it is a

specific function of all the Kähler moduli. We shall shortly see that their noncanonical

kinetic terms (involving the contraction with their Kähler metric) reside in that for ρ in

eq. 2.27.

The kinetic terms for the complex structure moduli come from integration of Rmix

overM, and so are also generally noncanonical involving contraction with their respective

1The imaginary part of ρ cubed is proportional to the volume squared.
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Kähler metric as follows,
M2
p

2

∫
d4xKab̄∂µφa∂µφ̄b (2.28)

We can thus write the effective action describing the moduli,

Seff =
M2
p

2

∫
d4xKIJ̄∂µφI∂µφ̄J −

M2
p

4π

eK
cs+Kax

V2
0

(
KIJ̄DIWD̄J̄W̄

)
. (2.29)

Any consistent flux compactification of type II string theories on Calabi-Yau manifolds

requires the addition of negative tension localized objects. This is necessary in order to

satisfy F̃(5)’s equation of motion which, when integrated over the Calabi-Yau, yields the

following tadpole condition,

1

`4s

∫
M
F(3) ∧H(3) +Qloc3 = 0. (2.30)

This is effectively a statement of the consistency of the configuration of field lines wrap-

ping the Calabi-Yau 3-cycles (i.e. field lines in the small dimensions curl and close onto

themselves, while those in large dimensions end on mathematically valid sources).

It can be shown that the term in eq. 2.30 involving the R-R and NS-NS fluxes is

positive definite. Of the allowed localized objects that preserve Poincaré invariance in the

four large dimensions and can act as sources for the fluxes, only the O3-planes contribute a

negative charge to the total Qloc3 , thus they must be included in the compactifation in order

to cancel all the remaining positive definite terms in eq. 2.30. Though the O3-planes are

not dynamical, they do in general impact the moduli space geometry. We assume a model

in which such effects are negligible. O3-planes also reduce the N = 2 supersymmetry we

began with to N = 1.

Generic theories with N = 1 supersymmetry involve complex scalars described by a

potential of the form,

V = eK
(
Kab̄DaWD̄b̄W̄ − 3|W |2

)
, (2.31)

where the superpotential, W , is a holomorphic function of the complex scalars {φa}. Notice

that the −3|W |2 term is absent in our effective action. This ‘no-scale’ form arises from a

simple but general cancellation inherent to Calabi-Yau compactifications at the classical

level. Namely, because the classical superpotential is independent of the Kähler moduli, the

Kähler dependence of the scalar potential arises solely from the contribution to ∼ |DW |2

from

Kab̄KaWKb̄W̄ = KaKa|W |2 (2.32)

with indices running over the Kähler moduli only. The classical expression for their Kähler

potential (i.e. that which comes from the special geometry) is,

Kka = −2 log

(∫
M
J ∧ J ∧ J

)
(2.33)

= −2 log

(
1

`6s

∫
M
dV

)
= − log(V2

0 ) (2.34)

= −3 log (−i(ρ− ρ̄)) . (2.35)
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Figure 1. The qualitative dependence of the scalar potential on the volume of a Calabi-Yau

manifold.

So,

KaKb̄Kab̄ = ∂aρ∂b̄ρ̄KρKρ̄ ×
1

∂ρ∂ρ̄K
(∂ρφ

a∂ρ̄φ̄
b) (2.36)

= KρKρ̄Kρρ̄ (2.37)

which gives,

KaKa =
−3

ρ− ρ̄
+3

ρ− ρ̄
−(ρ− ρ̄)2

3
= +3. (2.38)

This then yields the cancellation

Kab̄KaWKb̄W̄ − 3|W |2 = 0. (2.39)

The resulting scalar potential is positive semi-definite, and so its zeros are its global

minima. Solutions of the SUSY condition, DIW = 0 for all I = 0, 1, ..., h2,1, are the only

zeros because the metric and eK are positive definite. In general, when V 6= 0 the scalar

potential depends on the Kähler moduli through its overall dimensionful factor, M2
p /4πV2

0 ,

but when V = 0, all such dependence drops out. The flattening of the potential at a zero

in the volume direction of parameter space is shown schematically in Figure 1.

We see too that the ρ-dependent factor in the kinetic term for the volume modulus

in eq. 2.27 is indeed its Kähler metric, Kρρ̄. We may identify this term as the net kinetic

term for the Kähler moduli in eq. 2.29, similarly by the chain rule. Finally, we recognize

1/V2
0 in eq. 2.29 as eK

ka
, and thus, the effective action we obtain upon compactification as

that of a theory with 1 + h2,1 + h1,1 complex scalars and N = 1 supersymmetry with an

additional/non-generic feature. Namely, the cancellation of the −3|W |2 in the potential

by the contribution from a subset of the scalars, specifically h1,1 of them. The feature is

entirely due to the fact we’ve compactified on a Calabi-Yau manifold and used only classical

expressions.
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These are, generally speaking, subject to both α′ and gs corrections. In type IIB, the

complex structure Kähler potential is protected from both types, but the Kähler moduli

are not shielded from either. However, as is well known, such corrections are suppressed

in the large volume limit, 2 as are the instanton corrections the superpotential receives.

This setting also ensures backreaction of the fluxes on the geometry of the manifold is

subdominant. We will work in this regime and so now use the formulae we’ve reviewed to

set up explicit calculations on the mirror quintic.

2.2 Period Integrals

To search for local minima of the effective potential and compute its Taylor coefficients in

the expansion about these minima one must express the quantities in eq. 2.29 as explicit

functions of the complex structure(s) and axio-dilaton. To accomplish this we need only

express W and Kcs in this fashion, as all terms in eq. 2.29 are obtained from them.

Generally, the integrals over the compactification manifold need not be computed directly.

Rather they can be expressed in terms of a basis of systematically calculable functions, the

period integrals of the Calabi-Yau manifold, which are solutions to differential equations

(specific to the compactification manifold) known as the Picard-Fuchs equations.

By the Poincaré dulaity H(3)(M) is isomorphic to H(3)(M), the space of nontrivial

3-cycles. Thus, for any two closed 3-forms α(3) and β(3) there exist two 3-cycles A and B

such that, ∫
M
α(3) ∧ β(3) =

∫
A
β(3) =

∫
B
α(3). (2.40)

If {Ci} are a basis of 3-cycles, the right hand sides of eq. 2.40 are a linear combination of

the integrals of the relevant 3-form over the basis cycles.∫
A
β(3) =

h3∑
i=1

Ai
∫
Ci

β(3) (2.41)

∫
B
α(3) =

h3∑
i=1

Bi

∫
Ci

α(3) (2.42)

where the Ai and Bi are real numbers (the components of A and B in the Ci basis). Thus,

W can be expressed as a linear combination of the integrals of the holomorphic 3-form over

the basis cycles for H(3)(M). These are known as the period integrals, or period functions.

They are functions of the complex structure moduli only.

We note the existence of an integral and symplectic basis. The first of these properties

means Ci is a geometrical cycle (that is, a submanifold, not merely a formal object defined

as the dual to a 3-form). The second means each basis cycle intersects only one other basis

cycle, and does so exactly one time. We denote the period functions in this basis as follows,

Πi(z
1, ...zh

2,1
) =

∫
Ci

Ω (2.43)

2This limit is one in which not only the 6-volume but all subvolumes are large compared to the natural

sizes (involving the dimensionful constants).
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where the index i ranges from zero to 2h2,1 + 1 for a total of h3 different periods. The

symplectic basis is the one most natural for us because the period functions have well

defined expansions about special points in the moduli space where vacua accumulate, as

we shall discuss at greater length shortly.

The intersection form allows us to express the effective action in terms of these natural

period functions. Two 3-cycles intersect at points in a 6-dimensional manifold. Since

cycles are oriented such points will have multiplicity ±1. The intersection form, in the

context where the (3)-homology groups are the domain, takes in two 3-cycles and sums the

intersection multiplicities. In light of the Poincaré duality this is equally viewed as a map

from two copies of the (3)-cohomology groups. That is, we write

Qij = Q(Ci, Cj) = 〈Ci ^ Cj [M]〉 (2.44)

= Q̃ij = Q̃(αi, αj) =

∫
M
αi ∧ αj . (2.45)

In an integral and symplectic basis Qij are the entries of a symplectic h3 × h3-matrix.

The superpotential, W, can now be expressed as follows,

W =

4∑
i=0

GiΠi(z) (2.46)

= (F − τH) ·Π(z) (2.47)

where F and H are row vectors whose four entries indicate the quantity of R-R and NS-

NS flux wrapping the basis cycles, and Π(z) is a column vector containing the h3 period

functions. It can be shown that the 3-form fluxes wrapping the integral and symplectic

basis cycles are integrally quantized in units of 4π2α′,

1

2πα′

∫
Ci

F(3) ∈ 2πZ (2.48)

and similarly for H(3). Since the overall dimensionful factor has been pulled outside the

potential, this amounts to requiring the entries of the F and H vectors in eq. 2.47 be

integers.

The Kähler potential for the complex structure modulus is expressed in terms of the

period functions as follows,

Kcs(z, z̄) = − log(iΠ†(z̄)Q−1Π(z)) (2.49)

In evaluating these functions, one can avoid performing an integration over the compacti-

fication manifold because the periods are solutions to particular differential equations, the

Picard-Fuchs equations (associated with the given Calabi-Yau). Given the above expres-

sions for the superpotential and Kähler potential, one need only find the solutions to these

differential equations to write down an explicit effective action for the moduli.

The complexity of the Picard-Fuchs equations quickly mounts as the number of moduli

increase. We consider the simplest case, where h2,1 = 1, and so there are a total of four
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period functions. There is a complete list 14 such compactifications, the most well known

being the mirror quintic. For these 14 models the Picard-Fuchs equation takes the following

form, [
δ4 − z(δ + α1)(δ + α2)(δ + α3)(δ + α4)

]
u(z) = 0 (2.50)

where δ ≡ z d
dz , and the αj are rational numbers specific to the compactification (the mirror

quintic has αj = j/5).

A convenient basis for expressing solutions to this ODE, which we shall label {Ui(z)}3i=0,

is as follows [16]

U0(z) = c G1,3
4,0(−z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0}) (2.51)

U1(z) =
c

2πi
G2,2

4,0(z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0}) (2.52)

U−2 (z) =
c

(2πi)2
G3,1

4,0(−z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0})

U3(z) =
c

(2πi)3
G4,0

4,0(z; {1− α1, 1− α2, 1− α3, 1− α4}, {0, 0, 0, 0}) (2.53)

U2(z) =

{
U−2 (z) Im(z) ≤ 0

U−2 (z)− U1(z) Im(z) > 0
(2.54)

The Gm,np,q are Meijer-G functions defined in terms of contour integrals in the complex, say,

s-plane,

Gm,np,q (z; {a1, ...ap}, {b1, ..., bq}) =
1

2πi

∫
L
ds

Πm
j=1Γ(bj − s)Πn

j=1Γ(1− aj + s)

Πq
j=m+1Γ(1− bj + s)Πp

j=n+1Γ(aj − s)
zs

(2.55)

where c is a constant specific to the given Calabi-Yau (one of the 14 models),

c =
1

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
. (2.56)

The particular linear combinations of the Ui(z) that yield the periods in the integral

symplectic basis, the Πi(z)’s, are fixed by the calculable monodromy transformations of

the homology cycles when transported about certain special points in the moduli space.

For the case of h2,1 = 1 there are three such special points: the large complex structure

point (which corresponds to z = 0 in our coordinates), the conifold point (z = 1) and

the Landau-Ginsburg point (z =∞). These nontrivial monodromy transformations of the

3-cycles in turn yield nontrivial transformations for the corresponding period functions.

For instance, if we donate the shrinking sphere as the conifold is approached by C3,

and the cycle it intersects by C0, then

Q03 = 〈C0 ^ C3, [M]〉 →〈C0 + nC3 ^ C3, [M]〉 (2.57)

= 〈C0 ^ C3, [M]〉+ n〈C3 ^ C3, [M]〉 (2.58)

= Q03 + n ∗ 0 = Q03. (2.59)

The integer n is specified by requiring mutual consistency between all the monodromy

transformations in the mirror quintic’s moduli space, and as is well-known, this requires
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n = 1. The monodromy transformations imply that the linear combinations of the afore-

mentioned solutions to the Picard-Fuchs equation, {Ui}, that correspond to the period

integrals in a symplectic basis for the mirror quintic are given by,

Π0(z) = U0(z) (2.60)

Π1(z) = −U1(z) (2.61)

Π2(z) = 3U1(z)− 5U2(z) (2.62)

Π3(z) = 5U1(z) + 5U3(z) (2.63)

where Π3 is the (analytic) period that vanishes at the conifold point, it’s partner, Π0, picks

up a copy of Π3 for each revolution about the conifold point, and the remaining periods

are analytic and nonvanishing. For a detailed derivation including the general form for any

of the 14 one parameter models see, for instance, Appendix A of [16].

The transformations of the periods upon circling a given special point in the moduli

space fix their expansions in the neighborhood of the special point. In the case of the

conifold point the transformation,

Π0(z)→ Π0(z) + Π3(z) (2.64)

for each revolution z → (z − 1)e2πi + 1, implies

Π0(z) = Π3(z)
log(z − 1)

2πi
+ f(z) (2.65)

where f(z) is analytic and nonvanishing at the conifold point. The expansions of the

period functions are discussed in detail in the following section. For now we remark that

the branch cut for Π0 introduces a branch point singularity in first derivative of Π0 which

in turn results in a singularity in the Kähler metric at the conifold point.

We also adopt the standard convention (see, e.g., [16] for details) where the entries of

the period vector, Π(z), are given in descending order,

Π(z) =


Π3(z)

Π2(z)

Π1(z)

Π0(z)

 (2.66)

while those in the flux vectors are labeled in ascending order,

F =
(
F0, F1, F2, F3

)
(2.67)

H =
(
H0, H1, H2, H3

)
. (2.68)

With this review of notation and conventions, all functions in the effective action have

now been specified. The only free parameters are the fluxes, which for us consist of eight

integers (four R-R and four NS-NS fluxes). So, by randomly selecting a set of eight integers,

constructing the corresponding scalar potential, searching for local minima (in the z − τ
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field space), and evaluating the potential’s Taylor coefficients about the local minima so

identified, one obtains the masses and couplings of a sample of effective field theories in

the landscape of the mirror quintic. Since this model’s only dynamical fields are the axio-

dilaton and the mirror quintic’s sole complex structure modulus there are a total of four

real degrees of freedom.

For the masses and couplings to have physical significance one must trade the {z, τ, z̄, τ̄}
basis for one that simultaneously diagonalizes the Hessian of the scalar potential, and yields

kinetic terms that are canonical (i.e. the Kähler metric evaluated at the vacuum is the

identity). This transformation and several other technicalities are discussed in detail in

section 3, but here we finish outlining the strategy in broad strokes.

To minimize a function numerically we must begin by providing a guess for the vacuum

location. Vacua are known to accumulate near the aforementioned special points in the

moduli space, especially near the conifold point. We focus our search there. Moreover, we

look specifically for zeros of the scalar potential, which are solutions to the SUSY condition

DzW = DτW = 0. This restriction both dramatically reduces the computational expense

of searching for vacua by decreasing the (real) dimension of the space over which the

function needs to be minimized from four to two, as well as enables us to compute a guess

location given a choice of fluxes (which is essential for numerical minimization). These are

not SUSY vacua in the traditional sense because we do not require that the superpotential

itself vanish at the vacua.

The first of these simplifications is due the fact that the two SUSY conditions imply

that the vacuum value of the axio-dilaton τSUSY for a given choice of fluxes is an explicit

function of the complex structure vacuum location. In particular,

τSUSY =
F · Π̄(z̄SUSY )

H · Π̄(z̄SUSY )
(2.69)

So, we evaluate the axio-dilaton in the function we seek to minimize, |DzW |2, at τ =

τSUSY (z). We then need only minimize over the variation of two real fields (the real and

imaginary parts of z). The guess location, zguess, for the given set of fluxes can be computed

straightforwardly by using the near conifold period expansions in the period vectors and

the Kähler potential below,

DzW (z, τSUSY (z))=

(
F − F · Π̄(z̄)

H · Π̄(z̄)
H

)
· (Π′(z) +KzΠ(z)) = 0, (2.70)

We compute the leading order solution to the above, which amounts to retaining the

log(z − 1) and constant terms, and dropping everything O(z − 1). The resulting zguess is

given in terms of the flux integers and period expansion coefficients in section 3.

To proceed further, it is essential to have high accuracy approximations to the period

functions near the conifold point. The Meijer-G functions, with respect to which the periods

and their derivatives can be expressed, are generally slow to evaluate numerically. As the

singularities of the Meijer-G’s are approached (for example the branch point singularity

for Π′0(z), and terms ∼ 1
(z−1)k−1 for its kth order derivative) this becomes a significant

obstacle. We not only evaluate such expressions multiple times while searching for a single
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vacuum, but we then must compute the Taylor coefficients at the near conifold vacuum

found. This will involve many additional evaluations of increasingly divergent (due to the

derivatives taken) Meijer-G’s near their singularities. The tremendous number of times

the search algorithm needs to be run to find a sufficiently large random sample of vacua,

and the subsequent computation of the Taylor coefficients makes it essential to have high

accuracy fast approximations to the period functions near the conifold point.

Additionally, we note that such approximations are also needed near the large complex

structure point (z = 0). The minima we are searching for typically have basins of attraction

that narrow sharply near the minimum. Though a particular set of fluxes may yield a guess

in the neighborhood of the conifold point, and so be worthy of pursuing, the guess may

lie far up the minimum’s basin outside the basin’s thin throat. Iterative minimization

procedures work by taking a steps in the direction of the gradient of the function being

minimized. A narrow basin that then flattens out can result in significant overshooting of

the minimum during the first steps. The search region needs to be large enough to contain

these initial sweeps as it ping-pongs around the minimum, and eventually spiral into it.

The surrounding buffer area we need includes the large complex structure point. The

behavior of the periods here is well known, Πi → (z log(z))i. Due to the branch cuts in

the periods, many of the Meijer-G’s in the expressions we seek to minimize are singular.

So, when searching for vacua we use “patched period functions”– piecewise defined fast

approximations to the exact expressions in terms of the Meijer-G’s. Outside the neighbor-

hoods of both the large complex structure point and conifold point (where the expansions

are used), we build interpolating functions by evaluating the exact periods on a grid. The

entire search region showing the neighborhoods where each of the three type of approxima-

tions to the period functions are used is found in Figure 2. We postpone further discussion

of the search algorithm until the Calculational Approach section, and now turn to the

computation of the fast approximations to the period functions.

2.3 Period Expansions for the Mirror Quintic

Three of the mirror quintic’s four period integrals (in the integral and symplectic basis) are

analytic in the neighborhood of the conifold point. These are the intersecting pair Π1(z)

and Π2(z) which are nontrivial at the conifold point, and Π3(z) which vanishes because it

is an integral over the collapsing three cycle. These can be approximated straightforwardly

by truncating their Taylor series. We write,

Π1(z) =

q∑
n=0

bn(z − 1)n (2.71)

Π2(z) =

q∑
n=0

cn(z − 1)n (2.72)

Π3(z) =

q∑
n=1

dn(z − 1)n. (2.73)

The periods and their first derivatives enter the scalar potential. Since we seek to

collect up to fourth order Taylor coefficients of the scalar potential at the vacua located,
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Figure 2. We search for no scale vacua in the square portion of the complex plane for z depicted

above. The three regions where we use different fast approximations to the period functions are

shown using different colors. The near-conifold patch consists of the disk of radius 0.5 centered at

the conifold, z = 1. The portion of the disk of radius 0.8 centered at the LCS point, z = 0, that

is not contained within the near-conifold region is shown in purple. Here we use the 12th order

expansions about z = 0 obtained directly from Mathematica. Lastly, an interpolating function built

from discrete Meijer-G data is used in the remaining portion of the square search region, shown in

light green. Branch cuts are indicated by the red zigzag lines, with the one emanating from the

conifold point along the positive real axis applying to Π0, and those emanating along the negative

real axis from the LCS point of relevance to all periods excluding Π0.

we will be evaluating fifth order derivatives of the periods near z = 1. For the sake of

accuracy we take q = 8. The expansion coefficients can be found in Table 3 of Appendix

A.

The remaining period, Π0, picks up one factor of its intersecting partner, Π3, for each

loop about the conifold point. This transformation property of Π0 restricts its form to

Π0(z) = Π3(z)
log(z − 1)

2πi
+ f(z) (2.74)

for some function f(z) that is analytic at the conifold point. Before proceeding we note that

we shall henceforth include an overall minus sign in front of the argument in the logarithm

in the expansion of Π0 so that all explicit values of the expansion coefficients correspond to

a consistent choice of branch cuts in Mathematica. Specifically, the expressions given for

the periods in terms of the Meijer-G’s use the convention of branch cuts emanating from

the conifold point along the positive real axis, and from the large complex structure point

along the negative real axis. Since Mathematica’s logarithm function places the branch cut
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along the argument’s negative real axis, it is necessary to include a minus sign in front of

the log’s argument in the expansion, eq. 2.74, to flip it from (−∞, 1] to [1,+∞).

Note that the argument of the logarithm in Π0’s expansion may be rescaled freely

because this amounts to a relabeling of analytic terms. The righthand side of eq. 2.74 is

equivalently written as

Π3(z)
log(−(z − 1))

2πi
+ f(z)− Π3(z)

2
= Π3(z)

log(−(z − 1))

2πi
+ f̃(z). (2.75)

The shifted function, f̃(z), is still analytic because Π3 is. Relabeling f̃(z) by f(z) we have

the same expression as eq. 2.74, only with a negative sign in front of the (z−1). We choose

however to keep the “extra” analytic term, −Π3/2, separate and take the form,

Π0(z) = Π3(z)

(
log(−(z − 1))

2πi
− 1

2

)
+ f(z). (2.76)

It is a convenient choice for performing checks of the accuracy of the Π0 approximation

because the factor multiplying Π3 does not change sign (the range of the imaginary part

of the logarithm function in Mathematica is [−π, π]).

Since we have a polynomial expansion for Π3, the task of obtaining a fast approximation

for Π0 amounts to finding one for the unknown f(z). Since we have no special restrictions

to this function’s properties aside from analyticity, the simplest approximation is a Taylor

series about z = 1. We write

f(z) =

q∑
n=0

an(z − 1)n. (2.77)

The zeroth coefficient is the value of Π0 at the conifold point, which is trivial to compute.

The higher order coefficients are more difficult.

Although each

an =
1

n!

dnf

dzn

∣∣∣∣
z=1

=
1

n!

(
dnΠ0

dzn

∣∣∣∣
z=1

− 1

2πi

dn

dzn

[
Π3(z)

(
log(−(z − 1))− 1

2

)] ∣∣∣∣
z=1

)
(2.78)

is finite, the fact that the divergences between the two terms on the righthand side cancel

exactly at each order is lost if one attempts to evaluate (numerically) the righthand side

exactly the conifold point. Mathematica’s “Limit” function cannot be used to remedy this.

However, the next coefficient, a1, is nonetheless easily obtained numerically by exploiting

the weakness of the divergences that cancel in the first derivative, which are logarithmic.

In particular, to leading order in s ≡ (z − 1), a1 is given by,

a1 =

(
dΠ0

dz

∣∣∣∣
z=1

− d1
log(−s)

2πi

)
+
id1

2π
+
d1

2
+O(s log(s)). (2.79)

We obtain an approximate value for a1 by dropping the O(s) terms which involve higher

order (unknown as of now) ai’s and evaluating the remaining known expressions on the

righthand side sufficiently close to the conifold point that errors due to the truncation are
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negligible. Taking the form s = e−t, the negligibility of such errors at a finite t = t∗ is

ensured if the value of ã1(t) defined by,

ã1(t) = Π′0(1 + e−t) +
id1

2π
+
d1

2
− d1

log(−e−t)
2πi

(2.80)

converges within the relevant precision one is using for t→ t∗. Such convergence is exhib-

ited in Table 1.

t ã1(t)

2 0.0082657465− 0.1488734062i

3 0.0143193561− 0.1662234075i

4 0.0193211265− 0.1734738528i

5 0.0221685901− 0.1762752502i

6 0.0235728366− 0.1773249249i

7 0.0242171435− 0.1777137131i

8 0.0245004660− 0.1778570993i

9 0.0246216047− 0.1779098968i

10 0.0246723700− 0.1779293266i

12 0.0247018694− 0.1779391052i

14 0.0247067045− 0.1779404287i

16 0.0247074729− 0.1779406078i

20 0.0247076106− 0.1779406353i

25 0.0247076138− 0.1779406359i

Table 1. Depiction of the the convergence of the expansion coefficient a1 computed numerically.

The third coefficient in f ’s expansion, a2, can be obtained in a similar fashion. We

write

ã2(t) ≡ 1

2

[
Π′′0(1 + e−t) + d2 +

3id2

2π
+
id1e

t

2π
− d2 log(−e−t)

π

]
(2.81)

However, here it is essential to use high-digit accuracy computations when evaluating the

righthand side for a given value of t. This is because we’re extracting a small number by

taking the difference of two large numbers, Π′′0(1 + e−t) and the term proportional to et in

eq. 2.81. Table 2 displays the convergence of a2.

Clearly this strategy is limited to the lowest expansion coefficients. At each higher order

the righthand side will involve evaluating increasingly divergent terms near the conifold

point and extracting an ever (comparatively) smaller difference. To obtain the higher order

coefficients we instead derive a recursion relation for the an’s by using the fact that both

Π0 and Π3 are solutions to the Picard-Fuchs equation. Specifically, since the Picard-Fuchs

equation is linear, f(z) must satisfy

ÔPF [f(z)] = −ÔPF
[
Π3(z)

(
log(−(z − 1))

2πi
− 1

2

)]
. (2.82)
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t ã2(t)

2 0.00213219053 + 0.09247047120i

3 −0.00142768524 + 0.11114853496i

4 −0.00594277215 + 0.11937168288i

5 −0.00880198201 + 0.12261391639i

6 −0.01027763172 + 0.12383805148i

7 −0.01097135473 + 0.12429273911i

8 −0.01128102108 + 0.12446060393i

10 −0.01147126928 + 0.12454519737i

12 −0.01150432390 + 0.12455665210i

16 −0.01151065730 + 0.12455841226i

20 −0.01151081435 + 0.12455844450i

24 −0.01151081798 + 0.12455844509i

28 −0.01151081806 + 0.12455844510i

Table 2. Depiction of the convergence of the expansion coefficient a2 computed numerically.

The righthand side is a known, albeit messy, analytic function due to the fact that

Π3’s near conifold expansion coefficients are known. Note that because OPF is a fourth

order differential operator the righthand side will contain terms that are individually di-

vergent (from derivatives acting on the log times the lower order terms in Π3 so as to yield

contributions ∼ s−1 and s−2). The divergences, though, exactly cancel due to the strict

relationship among Π3’s coefficients, owing to the fact that it satisfies

ÔPF [Π3(z)] = 0. (2.83)

Thus, we need only express the lefthand side of eq. 2.82 as a power series in s (whose

coefficient at a given order is a linear combination of a subset of the {ai}) and ensure we

have enough of the lowest order coefficients to generate the rest. It will turn out that the

zeroth order term on the lefthand side involves f ’s four lowest order coefficients, and all

those of order n > 0 involve the n− 1th and subsequent four coefficients: {an−1, .., an+3}.
Hence, the a0, a1 and a2 obtained numerically as described above will be sufficient to start

off the recursive procedure, and provide us as many coefficients as we need.

To that end, we rewrite the Picard-Fuchs differential operator as follows,

ÔPF = −sδ4 − s(k1δ
3 − k2δ

2 − k3δ − k4)− (k1δ
3 − k2δ

2 − k3δ − k4) (2.84)

= −s
4∑
i=0

kiδ
4−i −

4∑
i=1

kiδ
4−i
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where the ki are the constants,

k0 = 1 (2.85)

k1 =

4∑
i=1

αi (2.86)

k2 =
4∑
i=1

4∑
j=i+1

αiαj (2.87)

k3 = α1α2α3 + α1α2α4 + α2α3α4 (2.88)

k4 = α1α2α3α4. (2.89)

Next note that δ acts on sn as,

δsn = (s+ 1)
d

dz
(z − 1)n

= (s+ 1)nsn−1

= n(sn + sn−1).

By repeatedly applying this rule each of the δjsn terms can be computed. For instance,

δ2sn = δ[n(sn + sn−1)]

= n(n(sn + sn−1) + (n− 1)(sn−1 + sn−2))

= n2sn + n(2n− 1)sn−1 + n(n− 1)sn−2.

After similarly obtaining δ3 and δ4 on sn, collecting terms and shifting indices of summa-

tion, the Picard-Fuchs operator’s action on f(z) can be expressed in the form,

ÔPF [f(z)] =
∞∑
n=0

(
C−1(n)an−1 + C0(n)an + C1(n)an+1 + C2(n)an+2 + C3(n)an+3

)
sn,

(2.90)

where a−1 ≡ 0 and the constants Cj(n) are also functions of the ki. Though a tedious

exercise, the Cj(n) can be obtained straightforwardly with the aid of Mathematica. A

similar procedure yields the expansion of the righthand side of eq. 2.82 thus completing

the recursion relation. The resulting values for the an are given in Table 4 located in

Appendix A.

The analogous expansions about the large complex structure point are far easier to

obtain numerically, despite the fact that three as opposed to one of the cycles transform

nontrivially upon circling it. Being finite but multiple-valued, the form of the corresponding

three periods involve linear combinations of powers of z log z. As mentioned at the end of

subsection 2.3, the leading order behavior of the jth period in our notation (that is the

term that contributes the most divergent term to the period’s derivative) is (z log z)j . This

form includes the behavior of the analytic period, Π0, which is u 1.

Since each of the other three periods has its own residual analytic term (analogous to

f(z) in eq. 2.74) as well as an additional subleading logarithmic term at each period index
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j higher, the near large complex structure expressions are more complicated. Nonetheless,

the approximations can be obtained using Mathematica’s “Series” function, due to the

special properties of Meijer-Gs. Essentially, one can expand the Gm,np,q in eq. 2.55 about

z = 0 to yield a series of integrals whose individual terms are easy to evaluate.

2.4 Structure of the Hessian

The masses of the moduli in the effective field theory associated with a given vacuum are

contained in the Hessian of the scalar potential specified by the particular flux configuration.

When evaluated at the vacuum location in the moduli space, the eigenvalues of the Hessian

in canonically normalized field coordinates are the squares of the masses in the effective

theory. No scale vacua have additional structure built in from the outset as compared to

ordinary general N = 1 supersymmetric theories.

We begin by expressing the general N = 1 scalar potential – that which includes

the Kähler moduli and does not assume cancellation of the 3|W |2 term – and its partial

derivatives in terms of the appropriately invariant quantities. It is convenient to adopt the

standard notation for the Kähler and geometrically covariant derivatives of the superpo-

tential, up to third order,

FI ≡ DIW ; ZIJ ≡ DIDJW ; UIJK ≡ DIDJDKW (2.91)

Note that FI is not to be confused with the amount of R-R flux wrapping a particular

3-cycle of the compact manifold. We express general N = 1 scalar potential then as,

V = eK(FI F̄
I − 3|W |2). (2.92)

where indices run over all moduli.

Due to the Kähler invariance of eq. 2.92 we may trade partial derivatives for covariant

ones and obtain the following covariant expressions [3].

∂IV = eK
(
(DIDJW )F̄ J − 2FIW̄

)
= eK

(
ZIJ F̄

J − 2FIW̄
)

(2.93)

∂I∂JV = eK
(
(DIDJDKW )F̄K −DIDJW̄

)
= eK

(
UIJK F̄

K − ZIJW̄
)

(2.94)

∂I∂J̄V = eK
(
−RIJ̄KL̄F̄KF L̄ +KIJ̄FK F̄

K − FI F̄J̄ + (DIDKW )(D̄J̄D̄
KW̄ )− 2KIJ̄ |W |2

)
(2.95)

= eK
(
−RIJ̄KL̄F̄KF L̄ +KIJ̄FK F̄

K − FI F̄J̄ + ZZ̄IJ̄ − 2KIJ̄ |W |2
)
. (2.96)

When the no scale cancellation takes place, and the SUSY condition for the remaining

dynamical moduli in the theory is imposed the nontrivial components of the Hessian reduce

to,

∂I∂JV = 2eKW̄ZIJ (2.97)

∂I∂J̄V = eK
(
ZZ̄IJ̄ +KIJ̄ |W |2

)
. (2.98)

where ZZ̄ is defined with the contraction of one holomorphic and one anti-holomorphic

index using the (inverse) Kähler metric, and indices now run over only the axio-dilaton

and complex structure moduli.
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Next choose a basis for the complex moduli fields that is orthonormal with respect to

the vacuum Kähler metric,

KIJ̄ |vac = δIJ̄ . (2.99)

Such a basis is only unique up to unitary transformations. An arbitrary choice will not

in general simultaneously diagonalize ZcanZ̄can. Note that while Z and Z̄ are complex

and symmetric, ZZ̄ is Hermitian and positive definite, and is thus related to the diagonal

matrix containing N = 1 + h2,1 eigenvalues by a unitary transformation. In canonical

coordinates we write,

ZcanZ̄can = UΣ2U † (2.100)

and express the eigenvalues as the squares of real positive numbers λi. The columns of

the unitary matrix, U , are of course the corresponding eigenvectors of the canonical ZZ̄.

(An excellent resource for understanding no scale structure and its implications is [10].

We’ve adopted their notation in our abridged calculation here in order to facilitate its use

to readers seeking greater detail).

Thus, the Hessian in canonical coordinates,

Hcan = eKU†
(

(ZZ̄)can
IJ̄

+ 12×2|W |2 2Z̄can
ĪJ̄

W

2ZcanIJ W̄ (ZZ̄)can
ĪJ

+ 12×2|W |2

)
U (2.101)

can be diagonalized by a unitary transformation defined in terms of the 2N×2N-matrix U ,

U =

(
U 0

0 U †

)
. (2.102)

In particular, one can rewrite eq. 2.101 as,

Hcan = eKU†
(

Σ2 + 12×2|W |2 2ΣW

2ΣW̄ Σ2 + 12×2|W |2

)
U (2.103)

A permutation of the rows and columns of matrix between U and U† in eq. 2.103 casts

it as block diagonal, with each of the N 2×2 blocks having the form,(
λ2
i + |W |2 2λiW

2λiW̄ λ2
i + |W |2

)
. (2.104)

The eigenvalues of the Hessian then come in pairs, namely those of each block times the

overall factor of eK,

m2
i± = eK (λi ± |W |)2 . (2.105)

The fact that the scalar masses in no scale supergravity take the form of eq. 2.105 does

not ensure a discernible pattern among the masses of an ensemble of vacua will emerge.

Which pattern is present, if any, depends on the relative scales of the λi as well as how they

compare to the magnitude of the superpotential at vacua. We shall see that a pronounced

– 21 –



hierarchy and splitting of the field space consistent across the ensemble arises due to the

special features of the conifold point, where our vacua accumulate. This is discussed at

length in section 4. It is worth remarking that no association of one particular kind of

moduli field (or a particular linear combination) with a heavy or light mass pair, nor the

existence of separated mass pairs, is imposed by eq. 2.105.

3 Calculational Approach

There are two components to our procedure for generating a random sample of effective

field theories in the mirror quintic’s moduli space. In this section we discuss each of these

in turn.

3.1 Generating a Random Sample of Vacua

Recall that we make the assumptions that the effect of O3-planes on the compact geometry

is negligible at the level of the 4d action for the moduli, that all Kähler moduli are stabilized,

and that the backreaction from fluxes (warping) can be ignored thus preserving the no scale

structure given by compactifying type IIB supergravity on a Calabi-Yau.

The effective action for the two remaining complex scalars takes the form,

Seff =
M2
p

2

∫
d4x Kcszz̄∂µz∂µz̄ +Kaxτ τ̄∂µτ∂µτ̄ − V (z, τ, z̄, τ̄), (3.1)

where both components of the field space metric are obtained by taking one holomorphic

and one antiholomorphic derivative of the relevant Kähler potential. The Kähler potential

for the complex structure is given by eq. 2.49, which is known explicitly in terms of Meijer-

G functions via eqs. 2.60–2.63 and 2.51–2.54. That for the axio-dilaton is obtained from

eq. 2.19.

The scalar potential, V , is not a holomorphic function of z and τ . It is however defined

in terms of the holomorphic superpotential, W (z, τ),

V =
M2
p

4πV2
0

eK
cs(z,z̄)+Kax(τ,τ̄)

(
Kzz̄DzWD̄z̄W̄ +Kτ τ̄DτWD̄τ̄W̄

)
. (3.2)

The superpotential is parameterized by eight integers indicating the amount of R-R and

NS-NS fluxes wrapping/piercing each of the mirror quintic’s four 3-cycles. In particular,

we write the superpotential as in eq. 2.47; a linear combination of the mirror quintic’s

period integrals in a symplectic basis (the Πi’s).

Solutions to the SUSY condition, DzW = DτW = 0, are zeros of the scalar potential

and thus are global minima of the theory. We search specifically for such solutions by

randomly scanning through models defined by eq. 3.1, that is by randomly drawing eight

flux integers. For simplicity, we assume a flat measure for the fluxes, and draw from the

interval, [−20, 20]. Once the set of fluxes is drawn, the corresponding superpotential can

be built, and the zeros of DIW can be searched for numerically.

The SUSY condition for the axio-dilaton implies it is an explicit function of the com-

plex structure vacuum location, specifically that in eq. 2.69. By evaluating the SUSY
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condition for the complex structure, DzW = 0, at τ = τSUSY (z) we accomplish an impor-

tant reduction in the computational expense of finding vacua numerically – we need only

minimize a single (semipositive definite) function of two real variables, namely,

u(x, y; {Fi, Hi}) =
∣∣(F − τSUSY (x+ iy)H) ·

(
Π′(x+ iy) +KzΠ(x+ iy)

)∣∣2 . (3.3)

where Kz is of course also a function of the real and imaginary parts of the complex

structure, x and y. Specifically,

Kz = −Π†(x− iy)Q−1Π′(x+ iy)

Π†(x− iy)Q−1Π(x+ iy)
. (3.4)

For a given set of fluxes the function, u, defined in eq. 3.3 can be assembled and

minimized directly in Mathematica using its FindMinimum function, provided that an

initial starting point (for x and y) is specified. Vacua are known to accumulate near the

conifold point, z = 1, so it is reasonable to target our search here. Since we have simple

expansions for the period functions here, namely eqs. 2.71–2.74, we may expand the Kähler

covariant derivative of the superpotential with respect to the complex structure in z − 1.

The term involving Π′0 in DzW will yield a logarithm of z − 1. This is the most divergent

term. By retaining only the logarithmic and O(1) terms in DzW = 0 we can solve for z in

terms of the fluxes. The result is,

zguess = 1− eϕ (3.5)

ϕ = −1 + 2πi

(
βa0 − a1 − d1

2

d1
+
F2 − tH2

F3 − tH3

βb0 − b1
d1

+
F1 − tH1

F3 − tH3

βc0 − c1

d1
− F0 − tH0

F3 − tH3

)
(3.6)

β = − ā0d1 − c̄0b1 + b0c̄1

b̄0c0 − c̄0b0
(3.7)

t =
F3ā0 + F2b̄0 + F1c̄0

H3ā0 +H2b̄0 +H1c̄0
(3.8)

Note that the axio-dilaton has been evaluated at τSUSY (z;F,H) and expanded as well. It

is the the O(1) constant, t, above.

There is no guarantee that a random choice of fluxes will have a near conifold minimum

that satisfies the SUSY condition. In fact, the vast majority do not. Whether this is the

case can be determined from the initial guess. If zguess − 1 is so large that O(z − 1) terms

dominate log(z − 1), then the expansion that lead to zguess was not valid to begin with,

and so the eight fluxes are redrawn.

To summarize, then, the steps of our search algorithm are:

1. Randomly draw eight integers independently from the interval [−20, 20].

2. Compute the guess via eq. 3.6. If it is more than 0.5 away from conifold redraw

the fluxes. Otherwise construct u(x, y;F,H) using the patched period functions.

3. Minimize u using FindMinimum, with the real and imaginary parts of the guess as

the starting point. (We further invoke the option that limits the search region to avoid
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Mathematica searching far away from the region of interest when there is no near conifold

minimum, and/or extrapolating the periods so as to give artificial minima).

4. If a minimum is found, and that minimum is sufficiently close to the conifold, we

collect a variety of useful information including the list of fluxes, the minimum’s location,

the magnitude of u, and the axio-dilaton’s location τSUSY (zmin).

5. Repeat.

Lastly, it is necessary to filter these local minima of u. Since the imaginary part of the

axio-dilaton is proportional to the inverse of the string coupling, any minima found during

the search that have negative Im(τSUSY (zmin)) are unphysical. Removing these, the list

of potential vacua is approximately cut in half. Next, only the zeros of u should be kept,

as the evaluation of the axio-dilaton at 2.69 assumes vacua solve DIW = 0. We eliminate

minima whose u is above a threshold of 10−6.

To compare vacua properly, particularly with regard to their locations in the the τ

field space, we need to perform an SL(2,Z) transformation that maps each vacua’s τ value

into the fundamental domain. A set of four integers {a, b, c, d} is found such that the

transformation,

τ → aτ + b

cτ + d
(3.9)

maps the axio-dilaton into the strip in the upper half-plane with both Re(τ) < 1
2 and

|τ | > 1
2 . The vacuum’s fluxes are then mapped as follows,

Fi → aFi + bHi

Hi → cFi + dHi.

This is the four dimensional incarnation of the original SL(2,Z) symmetry enjoyed

by the 10d type IIB supergravity action. In fact, one reason for formulating the theory

in terms of the axio-dilaton is so this symmetry is made manifest. The transformation is

stated for the total 3-form flux as,

G(3) → cG(3) + d. (3.10)

Performing the transformation also enables us to check for duplicate vacua. The transfor-

mation is not 1-to-1, so vacua with different fluxes prior to mapping may actually corre-

spond to the same vacuum in the fundamental domain. Though possible, no instances of

double counting were found among the vacua identified with our algorithm.

Finally, we impose the type IIB tadpole condition on the fluxes, eq. 2.30. This integral

expression can be restated conveniently in terms the number of orientifold planes and D3-

branes, and the dimensionless fluxes wrapping the mirror quintic’s 3-cycles as

F ·Q ·H =
1

4
NO3 −ND3, (3.11)

where Q is the intersection matrix, and F and H are the vectors containing the four R-R

and four NS-NS flux integers. The condition is often stated as an inequality by defining
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Figure 3. Complex structure and axio-dilaton vacuum locations for the random sample of 1358

vacua.

the maximum of the righthand side as the positive number Lmax,

F ·Q ·H ≤ Lmax. (3.12)

We make an admittedly arbitrary choice of Lmax = 300, and dispose of vacua whose

fluxes combine via Q to violate this threshold. We are interested in the statistical features

of flux vacua in the mirror quintic’s moduli space as a probe of the landscape more broadly.

So long as our results are not sensitive to the particular choice of Lmax, we believe it is

reasonable to relax the condition. We find this is the case and so proceed without concern

for the actual maximum number of orientifold planes the mirror quintic can support.

The results for the masses and couplings given in the following section are for the

largest random sample of vacua we found using this search algorithm and filtering. It

consists of 1358 near conifold vacua whose complex structure and axio-dilaton’s locations

are shown in Figure 3.

3.2 Computing Coefficients

Now that we have a random sample of flux vacua, we turn to our second computational

task – obtaining the masses and couplings to quartic order in the corresponding ensemble of

effective field theories. These are the data whose statistics we want to analyze. For a given

model, the nth order couplings are the nth order Taylor coefficients of the corresponding

scalar potential expanded about the model’s vacuum and transformed appropriately so

that the kinetic terms in all the effective field theories are canonical.

Though the vacuum axio-dilaton coordinate location in each model is fixed in terms

of the vacuum’s complex structure location, the axio-dilaton is a full degree of freedom.

We fixed it as an explicit function of z in our search algorithm as a short-cut to finding
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the location of minima of the scalar potential. Here we leave τ as a variable in the scalar

potential, and so have two complex degrees of freedom. The Hessian then is a 4×4-matrix,

and the four masses come in two pairs due to the special structure of the mass matrix in

no scale models, as we reviewed in section 2.4.

This structure is relevant to the higher order couplings because we need to report

them in a basis which not only yields canonical kinetic terms but also diagonalizes the

mass matrix. In this subsection we first discuss the field redefinitions,

{z, τ, z̄, τ̄} → {y1, y2, y3, y4} (3.13)

(z, τ) ∈ C2, y ∈ R4 (3.14)

that accomplish this, and we then the numerical algorithm for evaluating the Taylor co-

efficients. Though the original complex coordinates are the simplest in which to evaluate

the Taylor coefficients because we have expansions for the periods in z − 1, it will still be

necessary to design an efficient algorithm. This somewhat tedious exercise is discussed in

the second half of this section after defining the specific transformation that is applied to

each tensor of Taylor coefficients calculated with the algorithm.

To that end, we define the column vector of fields in our original complex basis,

Φ ≡


z

τ

z̄

τ̄

 . (3.15)

The effective field theory is obtained by expanding about a homogeneous background,

Φvac. We begin by writing, Φ = Φvac + BΨ, where the matrix B will serve to canonically

normalize the kinetic terms. We have,

L(Φ) = L(Φvac) + ∂µΨ†B†(Gvac +O(Ψ))B∂µΨ− V (BΨ) (3.16)

= Lvac + ∂µΨ†B†GvacB∂
µΨ− 1

2
Ψ†B†MBΨ +O(Ψ3) (3.17)

where G(Φ) is the Hermitian matrix containing the components of the Kähler metrics.

Specifically,

G(Φ) =


Kzz̄ 0 0 0

0 Kτ τ̄ 0 0

0 0 Kz̄z 0

0 0 0 Kτ̄ τ

 . (3.18)

and Gvac is that evaluated at the vacuum.

The effective field theory will have canonical kinetic terms provided

B†GvacB = 1. (3.19)

This is easily accomplished by rescaling the fields. A normalized complex basis, which we

denote {ξ, σ}, will be useful in discussing our results so we define one during this otherwise
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intermediate step. It will be convenient, in addition, to shift the normalized complex

structure field so that it is zero at the conifold. Thus we write,

z = 1 + C1ξ , τ = C2σ (3.20)

where C1 and C2 are the constants 1/
√
Kzz̄|vac and 1/

√
Kτ τ̄ |vac, respectively (we drop the

superscripts on the Kähler potentials indicating the complex structure and axio-dilaton as

its diagonal form in z and τ renders them superfluous in the metric). Then,

Ψ ≡


ξ − ξvac
σ − σvac
ξ̄ − ξ̄vac
σ̄ − σ̄vac

 . (3.21)

The matrix M contains the partial derivatives of the scalar potential (in the original

coordinates) evaluated at the vacuum, but with the appropriate ordering so that it is

Hermitian. We take the ordering (z, τ, z̄, τ̄) for the columns, so our rows have the barred

ordering (z̄, τ̄ , z, τ). Using the like orderings for columns and rows will not yield a Hermitian

matrix, only a symmetric one. We included the subscripts in the definition of G in part to

emphasize this.

The “rescaled” mass matrix, B†MB, is not in general diagonal. This is because the

scalar potential nontrivially mixes the complex structure with the axio-dilaton so that

mixed partials, like ∂z∂τV , do not vanish at the vacuum. We choose first to transform to

a set of four real fields, and then to diagonalize the resulting real and symmetric matrix

by an orthogonal transformation (for reasons that will become clear momentarily.)

We express Ψ as

Ψ = TX, where X =
1√
2


Re(ξ − ξvac)
Im(ξ − ξvac)
Re(σ − σvac)
Im(σ − σvac)

 . (3.22)

Note that T it is unitary. Lastly, we take

X = OY (3.23)

where O is the orthogonal matrix containing the (normalized) eigenvectors of T †B†MBT

as columns. That is,

Y TOTT †B†MBTOY = Y TDY =
4∑
i=1

m2
i y

2
i (3.24)

where D is diagonal.
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The full transformation to the real basis that simultaneously diagonalizes the Hessian

and canonically normalizes the kinetic terms (locally) is

J̃ : (Φ− Φvac)→ Y

J̃ = (BTO)−1

So, if we compute the rank three and four symmetric tensors of partial derivatives of the

scalar potential at the vacuum in the original complex coordinates,

Aijk =
∂

∂Φi

∂

∂Φj

∂

∂Φk
V

∣∣∣∣
Φvac

, (3.25)

we need to transform according to the standard tensor transformation law,

Ai′j′k′ =
∂Φi

∂Y i′
∂Φj

∂Y j′
∂Φk

∂Y k′
Aijk (3.26)

= J ii′J
j
j′J

k
k′Aijk, (3.27)

with J defined as the inverse of J̃ , and similarly for the fourth order coefficients, Ai′j′k′l′ as

well. By choosing the particular unitary transformation that diagonalizes the rescaled mass

matrix and yields a basis of real fields, yi, we avoid concerning ourselves about reordering of

the entries of the complex symmetric rank three and four tensors we compute numerically.

This final task, evaluating the Taylor coefficients in the original complex field coor-

dinates, may seem trivial. After all, the vacua reside near the conifold point where the

period functions are polynomial in (z − 1) and/or (z − 1)n log(z − 1), so we never need

evaluate the divergent Meijer-G’s in the scalar potential resulting from derivatives of Π0

(and Π̄0). However, the seemingly mundane exercise of symbolically simplifying the near

conifold scalar potential resulting from plugging in the period expansions and its partial

derivatives proves prohibitive.

This is mainly due to the cumbersome way the scalar potential mixes up the periods

and the relative factors of

∼ ∂mΠ†Q−1∂nΠ

(Π†Q−1Π)m+n
(3.28)

between its summands. Since we are plugging in eighth order expressions for the periods,

the number of terms that need to be expanded, collected and organized is large. Rather

than try to undo the natural packaging of the period functions, we make use of it.

Our strategy is to express each entry in the tensors we wish to evaluate, the Aijk and

Aijkl, in terms of simple combinations of a small number of blocks. Each block is built out

of smaller elements, which include the periods, their derivatives and combinations thereof

(the Kähler potential for the complex structure and its partial derivatives). For each model

in the ensemble, we evaluate the periods and their derivatives up to fifth order once. The

values in this array are then combined appropriately to obtain the rest of the elements

needed to construct the blocks. The blocks are then assembled into each entry required by

the tensors. Essentially, we are exploiting the fact that many expressions appear repeatedly

within a given entry and across entries, and so we need not evaluate them repeatedly.
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The blocks consist of all the Kähler covariant derivatives of the superpotential, FI , and

their partial derivatives up to third order taken with respect to any of the complex fields.

Some of these are zero, for instance ∂τ̄Fz, but note ∂z̄Fz is in general non-vanishing. Since

the scalar potential is

V = eK
(
Kzz̄FzF̄z̄ +Kτ τ̄Fτ F̄τ̄

)
(3.29)

its third and fourth order partial derivatives involve several terms linear in FI . All such

contributions vanish however because the SUSY condition, FI = 0, is satisfied at all the

vacua. By only retaining those terms in Aijk and Aijkl that have at least one partial

derivative on FI and at least one on its conjugate we have more manageable expressions

for each Taylor coefficient that need to be combined.

The individual blocks are compact when expressed in terms of the elements. For

example,

∂z∂z̄∂τFz = ∂z∂z̄∂τ (F − τH) · (Π′ +KzΠ) (3.30)

= −H · (Π′′ +Kzz̄Π′ +Kzzz̄Π). (3.31)

This approach enables us to compute both rank 3 and 4 tensors for the entire sample of

1358 vacua in time of order tens of minutes.

Lastly, we note that the form of the Hessian outlined in subsection 2.4 is confirmed

by comparing that obtained by direct differentiation with that built from the metric and

(separately constructed) Z and Z̄ matrices in the original noncanonical basis. The percent

deviation between the eigenvalues of the two are on the order of 10−13.

4 Results

In this section we analyze the distributions of masses and couplings for a collection of 1358

vacua, found using the vacuum hunting algorithm described in subsection 3.1. There is a

great deal of structure built in from the get-go. The task is to untangle the randomness

that is present from that structure. As indicated in subsection 2.4, the no-scale structure

for a theory with N complex moduli is responsible for pairing the 2N scalar masses of the

effective field theory.

The association of each mass pair with a single one of the complex scalars (for us,

either z or τ) is not expected, a priori, because of the mixing between the axio-dilaton and

the complex structure in the scalar potential.

However, for near conifold flux vacua in the mirror quintic’s moduli space that satisfy

the SUSY condition, DIW = 0, the two scalar fields do approximately separate; ever more

so as the vacuum-to-conifold distance is diminished. Tied to this cleaving of the field

space is also a scale separation between the associated axio-dilaton and complex structure

mass pairs. We observe that such a hierarchy percolates through third and fourth order

couplings. All this structure, nearly universal across our ensemble, can be traced back to

a single quantity: the mirror quintic’s Yukawa coupling.

We will show that the larger the Yukawa coupling, the more exaggerated this structure

becomes. Its singularity, located precisely where vacua accumulate – at the conifold point
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– is responsible for the expected pattern of near conifold mass and couplings dominating

the ensemble. We use the qualifier “expected” because there is one random ingredient: the

vev of the superpotential. Depending on your point of view, it muddies otherwise sharply

defined features, or provides the possibility of freedom from rigidity (albeit a vanishingly

small possibility as the conifold is approached).

In this section we first establish the distance of a vacuum from the conifold as the key

quantity controlling the degree to which structure is amplified or diluted. Next, we build

intuition for the mass pairs and their distributions. Finally we present the hierarchies

and correlations observed in the data for cubic and quartic couplings, which similarly

is attributable to the singular dependence on the vacuum-to-conifold distance. For ease

of discussion, we will loosely refer to the magnitude of a vacuum’s canonical complex

structure coordinate, |ξvac|, as its distance to the conifold in moduli space. More precisely,

this distance is a monotonically increasing fucntion of |ξ|, but is not identically equal

to it. During our investigation we developed a Random Matrix Model that accurately

captures this particular combination of both regularity and randomness. We comment on

the possible generalizations of these results to models with more complex structure moduli

in the Discussion section.

4.1 Masses

Since the SUSY condition is satisfied at our vacua, the complex 2×2-matrix ZIJ ≡ DIDJW

is the matrix of vacuum values of the partial derivatives of FI , specifically,

Z =

(
∂τFτ ∂zFτ

∂τFz ∂zFz

)
. (4.1)

Not all entries in this matrix are independent. It’s form is restricted because there is

no mixing between the complex structure and the axio-dilaton at the level of the Kähler

potential (Kzτ = 0) and also because Kτ τ̄ = −Kτ 2. These two, together with the SUSY

condition in τ , imply Z has the form,

Z =

(
0 Z01

Z10 Z11

)
, (4.2)

where the entries are complex valued (and Z01 = Z10).

The two nontrivial entries, it turns out, are related by a known analytic function when

the canonical basis is used (the fields we labeled ξ and σ, whose corresponding Z matrix

is Zcan). For compactifications of type IIB on general Calabi-Yau the following equation

is valid at solutions to DIW = 0,

ZIJ = FIJKZ̄0K (4.3)

in a basis where the fields in the effective action are canonically normalized. The FIJK
in eq. 4.3 are the Yukawa couplings between the Calabi-Yau’s complex structure moduli
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and their fermionic counterpart in the effective field theory. Since the mirror quintic has a

single complex structure modulus we have the direct proportionality,

Z11 = F111Z̄
01. (4.4)

where we’ve suppressed the “can” superscripts.

The Yukawa coupling is singular at the conifold point. Its exact analytic form was

found by Candelas and de la Ossa in their seminal papers on the manifold (see for e.g. [17]).

Stated in terms of their complex structure field coordinate before canonical normalization,

ψ, which is related to ours by z = ψ−5 the Yukawa coupling takes the form

κψψψ =

(
2πi

5

)3 5ψ2

1− ψ5
. (4.5)

Note that while zero and infinity switch under the coordinate transformation between ψ

and z, the conifold point is fixed. The conifold singularity in eq. 4.5 persists through

the coordinate transformation to our F111, and manifests as one naively expects (as a 1/ξ

divergence) with minor modification. This is because the prepotential from which κψψψ
derives is the same as ours.

It is useful to briefly sketch the calculation of Candelas and de la Ossa in order to

understand the origin of the divergence, as well as its leading order form in our coordinates.

They define a set of functions, “Wronskians”, in terms of derivatives of the prepotential.

The kth Wronskian is given by

Wk = Z i d
k

dψk
Gi − Gi

dk

dψk
Zi (4.6)

where Z i and Gi are an intersecting pair of periods (in an integral and symplectic basis).

Since there are four nontrivial cycles, i ranges from 1 to 2. The prepotential is

G =
1

2
Z iGi. (4.7)

A crucial next step is to identify the Yukawa coupling,

κψψψ =

∫
Ω ∧ d

3Ω

dψ3
, (4.8)

with the third Wronskian. Together with the properties of Calabi-Yau, particularly the

fact that the periods solve the Picard-Fuchs equation, they obtain an ordinary differential

equation for W3, whose solution is given in eq. 4.5.

When the fields in the effective action are canonically normalized, the Yukawa coupling

receives a total factor of the inverse vacuum Kähler metric for the complex structure raised

to the three halves; one half power from the rescaling of the scalar field and one full power

from the transformation of the fermion (one half power for each of the two factors of the

fermion in the original interaction term ∼ κφχχ).

We’ve already accounted for one half of the total three halves by canonically normal-

izing our z coordinate. This implies the ratio of our Zcan11 to Zcan01 will have a leading order
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Figure 4. Plotted in light purple is the ratio of the magnitudes of the entries of the Z matrix for

our vacua (the 11 entry over the 01 entry) on the vertical, against |ξvac| which is a measure of the

vacuum to conifold distance. Special geometry implies that this ratio ought to be the magnitude of

the Calabi-Yau Yukawa coupling. The function plotted in red is a numerical fit of the data to the

leading order form of the mirror quintic’s |F|2. Note the extremely good agreement between the

two, and the divergence at the conifold point, precisely where vacua accumulate.

behavior of 1/(ξ log ξ), since the Kähler metric goes like log(ξ) near the conifold point,

ξ = 0. In Figure 4 we display the actual vacuum data for the magnitude of this ratio

against the conifold distance. A numerical fit to the leading order form is overlaid in red.

Note the exceedingly tight agreement between the two. Essentially, the ∼ 1
ξ dependence

comes from a contribution ∼ Π3
d3

dξ3
Π0, since

Π3
d3

dξ3
Π0 = O(ξ)

d3

dξ3
(O(ξ) log ξ + analytic) (4.9)

= O(ξ)

(
O(ξ)

d3

dξ3
log ξ +O(1)

d2

dξ2
log ξ +O(1)

)
(4.10)

= O(ξ)O(1/ξ2) (4.11)

= O(1/ξ) (4.12)

Our vacua live in a region where |F| >> 1, so Z11 always dominates Z01. This

is consequential for the mass spectra and coordinate transformation that enters into the

computation of the subsequent higher order couplings. Expressed in terms of the magnitude

of the Yukawa coupling (where we’ve suppressed the “111” indices), the ZZ̄ matrix takes
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the form,

ZZ̄ = |Z01|2
(

0 |F|e−iδ

|F|e+iδ |F|2 + 1

)
, (4.13)

whose eigenvalues come in the pair,

Λ2
± =

|Z01|2

2

(
|F|2 + 2± |F|

√
|F|2 + 4

)
. (4.14)

The larger of these is always Λ2
+, so, in our labeling convention for the λi’s we identify

λ2
1 = Λ2

+, and λ2
2 = Λ2

−.

Note that in either limit, |F| >> 1, or the reverse, we have Λ2
+ >> Λ2

−. If |F| >> 1

the eigenvector associated with the larger eigenvalue is almost entirely contained within

the span of the complex structure field, and in the opposite limit within that of axio-

dilaton field. Since we always have the former case, the largest eigenvalue of ZZ̄, λ2
1, is

associated always with the complex structure, and the smaller, λ2
2, with the axio-dilaton.

An immediate consequence of this is the cleaving of the eigenspace of the Hessian in two.

One subspace is spanned almost entirely by the complex structure and is associated

with the mass pair m2
1±, while the other is spanned by the axio-dilaton and is associated

with m2
2±. This is because the 2×2 blocks entering into the diagonalization of the Hessian,

which would otherwise mix these two fields, are approximately equal to the identity. These

2×2 blocks in the complex field coordinates of section 2.4 are U and its Hermitian conjugate.

In the real field coordinates of section 3.2 they form two by two blocks in O, upon a

reordering of rows and columns.

Whether or not the hierarchy in the λi leads to a hierarchy between the two mass pairs

– a heavy complex structure pair and a light axio-dilaton pair – depends on the relative

sizes of |W |, λ1 and λ2. More precisely, we begin by noting there is no ambiguity about

the heaviest mass. It is always m2
1+, which for us is always associated with z. It’s partner

(still associated with z) need not be second heaviest, however. To see why note that

(λ1 − |W |)2 < (λ2 ± |W |)2

λ2
1 − λ2

2 < 2|W |(λ1 ± λ2)

λ1 ∓ λ2 < 2|W |.

So, if half of the gap between the λi is less than the magnitude of the vacuum superpotential

the second heaviest of the four masses is the larger of the axio-dilaton masses, m2+. If

the average of the λi is also less than the magnitude of the superpotential then the third

heaviest mass is the lighter of the axio-dilaton pair, and the lightest of the four masses

is the lighter of the complex structure pair. To summarize, the naive/expected ordering

among the masses,

m2
1+ > m2

1− > m2
2+ > m2

2− (4.15)

is realized if the difference condition is not met (large discrepancy between the λi’s).

The middle two masses swap places,

m2
1+ > m2

2+ > m2
1− > m2

2− (4.16)
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Figure 5. The difference between the λi divided by twice the vev of the superpotential vs. |ξvac|,
illustrating the key quantity in the hierarchy condition. Data points that fall below the dashed

pink line do not satisfy the condition and have a mass hierarchy that differs from the expected one

by at least one swap. Note that as the conifold distance decreases the data points float upwards,

confirming the expectation (based on the divergence of the Yukawa coupling) that the condition

becomes ever more difficult to satisfy as the location of the vacuua approaches the conifold.

if the gap condition is met but the average condition is not. Lastly, if both conditions are

met the lighter complex structure mass shuffles all the way to the bottom of the mass scale,

m2
1+ > m2

2+ > m2
2− > m2

1−. (4.17)

As we’ve seen, the difference in scale between the two distinct nontrivial entries of Z

diverges as the conifold point is approached. Since the larger the scale difference the larger

the gap between the λi will be, we expect the likelihood of the gap condition being met to

diminish as the conifold point is approached. This is precisely what we find. In Figure 5

we plot λ1 − λ2 divided by twice the magnitude of the superpotential against the conifold

distance for each vacuum. A horizontal line at 1 is indicated by the dashed line, so points

above this line fail the gap condition and the naive order exists, while those below have at

least one rightward shift of m2
1− down the hierarchy in 4.15.

There are two important observations. First, the vacua migrate upward as the coni-

fold is approached making the condition ever more unlikely to be satisfied, verifying our

expectation. Second, there are nonetheless a few vacua for whom the condition is met.

Specifically, we find 33 out of 1358 such instances, or 2.4%. The image toward the upper-

right of Figure 5 shows the portion of the plot focused near the bottom (with exactly 33

points below the dashed line). The random ingredient that allows for vacua to dip below
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Figure 6. A scatter plot of the magnitude of the vev of the superpotential vs. ξvac. Note that

the two bear no significant dependence on one another. Data points become more clustered as one

moves toward the peak or either quantity’s distribution independently.

the threshold for mass swaps is the magnitude of the superpotential. The vev shows no

dependence on the distance of the vacuum from the conifold. This is shown in Figure 6.

We reiterate that in all cases, including these nonconformist 33, the Hessian’s eigenspace

enjoys an approximate separation between the complex structure field space, and axio-

dilaton field space. The angle between the subspace spanned by one of the moduli – ξ or

σ – and that spanned by the two eigenvectors associated with one of the mass pairs – m2
1±

or m2
2± – can be computed. In Figure 7 we display the histogram of angles between the

complex structure subspace and the i = 1 mass pair for all vacua. The mean angle is 5.85

degrees, indicating that the subspaces are approximately parallel. The identical statement

holds for the axio-dilaton subspace and the second mass pair. A visual depiction of the

subspaces is included to the right of the histogram, and uses the mean angle.

Now that we have established that this separation between z and τ lines up with the

half-way marker between the masses in virtually all cases, we turn to developing intuition

for each pair. We display the distributions of λ1 and λ2 in Figure 8, and of |W | in Figure

9. We have absorbed a factor of the vev of eK/2 into the definitions of each of these three,

as they are the correct Kähler invariant quantities, i.e. the physically relevant values to

consider.

As expected, the λ1 distribution’s scale is significantly larger than λ2’s due to the

accumulation of vacua where the Yukawa coupling diverges. Specifically, we find a difference

of two to three orders of magnitude. The characteristics of the corresponding mass pairs

will depend on the relative sizes of the λi to |W | individually. We find a superpotential

that is approximately one order of magnitude larger than λ2, but one order smaller than

λ1 (several orders smaller for vacua in the tail).

The resulting two mass pairs are displayed in Figures 10 and 11, with the larger mass

of each couple plotted on the horizontal. We immediately notice that the complex structure
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Figure 7. A distribution of relative angle, θ, between the complex structure subspace of the moduli

space and the m2
1± eigenspace, which is identical to that between the axio-dilaton subspace and the

m2
2± eigenspace. The fact that the angles for all vacua are small indicates that the former pair are

approximately parallel to each other, and likewise for the latter. A visual aid depicting this split of

the eigenspace is shown to the right using the mean value of this angle, which is 5.85 degrees for

our vacua.

Figure 8. Histograms of the Käahler independent λi for our ensemble of vacua. Estimated distri-

butions obtained numerically are plotted over each histogram in blue.

mass pair looks more tightly correlated than the axio-dilaton pair. This, as we’ll analyze

more precisely later, is entirely an artifact of the difference in scale between the two field’s

pairs; an effect that is exaggerated by the particularly wide range needed to include all of

the z mass data points in Figure 10. The distribution (for both members of the z pair)

peaks at much lower values, around 100. A fairer comparison with the τ masses, which are

more widely/evenly distributed, would come from zooming in and excluding the z masses’
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Figure 9. The histogram of the Käahler independent vevs of the superpotential for our ensemble.

The estimated distribution obtained numerically is overlayed.

long tails. A partial zoom is shown in the ellipsoidal window on the right in Figure 10.

A more refined analysis will nonetheless reveal that the two fields have virtually identical

levels of relative degeneracy between the members of their respective pairs.

Turning to the τ data points shown in Figure 11, note firstly that they fill in more

of the triangular half below the diagonal including the region immediately beneath the

diagonal. This indicates that there is a larger variety among the dimensionful mass gaps

for the axio-dilaton, than for the complex structure. There are more instances of near

equality between the masses – in an absolute/dimensionful sense – as compared to those

in the lower range of z’s distribution (there are far more data points along the diagonal

boundary in the axio-dilaton’s scatter plot than in the zoomed in complex structure’s).

There are also more instances of large differences for the τ pairs than the z’s. Clearly, the

latter statement remains true when z’s tail is considered, but the former may not. These

distinctions make sense given the distributions for the λi and |W |. Essentially, the τ masses

are dominated by the superpotential, which has a rather large spread and is not skewed

(roughly Gaussian). This leads to a more uniform distribution horizontally throughout the

triangle.

The lack of space between data points and the diagonal is due to the fact that λ2

peaks very near zero, and decays quickly before its decline steadies around ∼ 0.5. This

increases the frequency of λ2’s that are completely negligible compared to |W |, and thus

very nearly equal masses among the given pair. The axio-dilaton pairs’ greater vertical

extent throughout the triangle is due to the combination of the larger spread in λ2 and

|W |, and the fact that the intervals where they are supported partially overlap. Thus, more

instances of close competition between λ2 and |W | occur than for λ1 and W .

These observations are helpful for building intuition, but a comparison of the degree

of degeneracy in the mass pairs of the two fields should involve dimensionless mass gaps,

namely those scaled by the mean of the masses in each pair. Starting with the difference

in the squared masses of the two members in the ith pair, 4λi|W |, one finds the limiting
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Figure 10. A scatter plot for the mass pair associated with the complex structure modulus, with

the heavier of the two, m1+, on the horizontal and the lighter, m1−on the vertical. A dashed line

with slope one is plotted in purple. The portion of the plot focused where the masses distributions

peak (i.e. where the data points cluster) is shown to the right.

Figure 11. The analogous scatter plot for the mass pair associated with the axio-dilaton as that

in Figure 10.

form,

∆mi/2

mi,avg
=

√
λi|W |

λ2
i + |W |2

(4.18)

λi << |W | :
∆mi/2

mi,avg
→ λi
|W |

<< 1 (4.19)

λi >> |W | :
∆mi/2

mi,avg
→ |W |

λi
<< 1 (4.20)

That the result is the same for both limits simply reflects the fact that one can equally

well view λi as the degeneracy breaking term as one can |W |. A small λi compared to |W |
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Figure 12. The cumulative relative mass gaps for each pair of masses, mi±. The pair associated

with the axio-dilaton is shown in on top in the darker shade of blue, while that associated with

the complex structure is shown behind in the lighter turquoise color. The two are nearly identical

meaning that the relative degree of non-degeneracy between the masses in a given pair is distributed

in the same manner across the vacua of our ensemble, regardless of with which of the moduli the

mass pair is associated.

yields a mass pair mi± ≈ |W | ± ε, and the reverse yields a mass pair ≈ λi ± ε.
Now, we may consider a probability density for each modulus as a function of the

rescaled half mass gaps. For a given one of the moduli its value integrated over an interval

[a, b] would yield the probability of finding a vacuum for whom that modulus’ associated

masses each lie within (b−a)mi,avg of their mean, mi,avg. We can then consider a cumulative

density function obtained by integrating the probability density from a = 0. In Figure 12

we display the histograms for our data corresponding to the cumulative density functions

(their discrete analogs) for our sample of vacua.

Notice that the complex structure and the axio-dilaton’s histograms are virtually in-

distinguishable. They both achieve 50% within a threshold of 0.26, and continue to rise

together in step with 75% of both fields having scaled gaps within the threshold of 0.40.

This assessment of relative degeneracy, or relative spread, is not evident from looking at

the scatter plots alone.

The structure and patterns we’ve encountered in the masses clearly won’t be replicated

with an ordinary Random Matrix Model where the Hessian for each vacuum is taken to

be Wirshart – a Hermitian random matrix that is positive definite by construction. One

essentially “squares” a random (Wigner) matrix, A, which is not in general Hermitian, by
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Figure 13. The left panel shows a scatter plot of the (Kähler independent) magnitude of the 01

entry of the Z matrix in canonical coordinates against the vev of the superpotential. The sharp

quarter-circle boundary is a manifestation of the tadpole condition, with the radius of the arc being√
Lmax which for us is

√
300. Within the region allowed by the tadpole condition the data points

exhibit no correlation. The panel on the right displays a plot of the Z matrix entry against the

remaining control parameter, the conifold distance. No correlation is evident between these either.

multiplying it with its complex conjugate. The entries of the Wigner matrix are taken

to be independent and identically distributed, that is drawn from an O(N2) dimensional

Gaussian.

In light of the analytic form of the Hessian with which we begin, and the limiting

behavior of one of its essential building blocks, Z, for near conifold vacua, we design a

different Random Matrix Model. We’ve seen three (Kähler independent) parameters are

ultimately in control. These are (1) the proximity of a given vacuum to the conifold point,

(2) its value of eK/2|Z01| and (3) its value of eK/2|W |. We should be able to mimic the

actual mass data with a random sample of these triples. The simplest case would be to

treat each parameter independently.

We saw earlier that control parameters (1) and (3) do not appear to depend on one

another, as indicated by Figure 6. A similar scatter plot for (1) and (2) is displayed in the

right panel of Figure 13, demonstrating their lack of correlation. The plot for (2) and (3)

shows a sharp cutoff because the tadpole condition forbids these data points from leaving

the quarter circle. It can be shown that the tadpole condition implies,

|Z01|2 + |W |2 ≤ Lmax (4.21)

in Gaussian normal coordinates.

The radius of the arc plotted in Figure 13 is indeed
√
Lmax =

√
300. Within this region

however the data points vary independently. The empty bands along both axes are simply
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Figure 14. The random matrix model data for the artificial complex structure mass pair are

plotted in light blue over that of the actual vacuum data, shown in light pink. The panel to the

right magnifies the portion of the plot where the mass distributions peak.

a reflection of the fact that the two distributions are peaked away from zero, with relatively

little of their support coming from the interval ≈ [0, 5]. Just as with the other two scatter

plots, the density of data points increases as either parameter is pushed towards the value

where its distribution peaks while the other is held fixed. The lack of correlation within

the region suggests we do the following.

First obtain estimated probability densities for the Kähler invariant magnitudes in the

canonically normalized fields, namely, eK/2|W | and eK/2|Z01|, as well as for the conifold

distance. Draw a value from each distribution independently. If it has parameters (2) and

(3) that violate inequality 4.21 dispose of it and redraw the triple until it is satisfied. Then

compute the random eigenvalues, λ2
1 and λ2

2, by evaluating the Yukawa coupling at the

randomly drawn conifold distance, and using it with the random |Z01| in eq. 4.14.

In Figure 14 we display the resulting scatter plot for the i = 1 random mass pair –

the artificial complex structure pair – atop that from our sample of actual flux vacua for

the full range of masses. The image in the ellipsoidal window zooms in on the range where

complex structure mass distributions peak. The RMM does a good job in reproducing the

data’s features in both regimes: the peak and the tail of the mass distributions. The same

is true for the RMM’s performance with the axio-dilaton mass pair. The two are virually

indistinguishable in their superposed scatter plots, shown in Figure 15.

The scaled mass gap CDFs for the RMM also agree rather well with the actual data,

and is shown in Figure 16. It is worth noting that without the step in the RMM procedure

that eliminates draws that live outside the quarter circle allowed by the tadpole condition

there is a noticeable overdensity of RMM axio-dilaton data points away from the diagonal

in the analogous version of Figure 15. The effect on the complex structure’s scatter plot of

removing RMM tadpole condition is not perceptible.
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Figure 15. The random matrix model data for the artificial axio-dilaton mass pair are plotted in

light blue over that of the actual vacuum data, shown in light pink.

Figure 16. The analogous histograms to those in Figure 12 for the random matrix model.

4.2 Couplings

The hierarchy present in the masses, due to the fact that our vacua accumulate where the

Yukawa coupling is singular, persists through the third and fourth order couplings. Since

the basis in which couplings ought to be reported factors into one half associated almost

entirely with the complex structure and the other with the axio-dilaton, we naively expect

each additional index associated with the former at the expense of the latter to involve the
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evaluation of increasingly more divergent terms near they singularity.

In particular, one expects four distinct scales to emerge among the distributions of

third order coefficients, and five scales for the fourth order couplings. These correspond to

the 3-choose-2 and 4-choose-2 ways one can differentiate the scalar potential. For instance,

at third order we expect the Ai′j′k′ with all indices related to the complex structure (that

is, equal to 1 or 2 in our convention for the basis of real canonically normalized fields) to

be dominated by the term involving a derivative of the Yukawa coupling. The next highest

scale expected would then be that with two complex structure and one axio-dilaton indices

(3 or 4 in our convention), followed by one complex structure and two axio-dilaton, and

lastly that with all three axio-dilaton.

First we establish that such a hierarchy of scales is realized, and then confirm the ex-

planation in the preceding paragraph is valid by showing that the scale separation becomes

ever more prominent as the vacuum-to-conifold distance diminishes. We then qualitatively

investigate the correlations between the couplings at a given order, and indicate that they

are not the result of the coordinate transformation alone. We accomplish this with the

use of another random construction. Specifically, we generate a set of random rank three

symmetric tensors and transform each by the orthogonal matrices from the actual set of

vacuum data. Though one might expect correlations to be built in by the special structure

of the Hessian’s eigenspace, the fact that none of the correlations present in the mirror quin-

tic data is replicated by the random procedure indicates that they are not the consequence

of diagonalization.

Turning to the hierarchy among the magnitudes of the couplings, the scale separation

can be shown visually by first imagining each of the entries in the third order couplings

for a given vacuum, Ai′j′k′ , as living in one of 64 cells of a 4-by-4-by-4 celled cube. We

have one cube for each vacuum, and its entries take on positive or negative values (with

equal likelihood, as indicated by the roughly Gaussian distributions centered at zero found

for all coefficients. A representative sample of the histograms and estimated distributions

can be found in Figure 17). Taking the labeling convention for the real and canonically

normalized field coordinates defined in subsection 3.2, one 2-by-2-by-2 subblock in, say,

the front-bottom corner of this cube will involve all complex structure related indices. The

subblock diagonally opposite it in the top-far corner will involve all axio-dilaton indices,

and the two types of mixed index subblocks will live interspersed throughout the remaining

6 off-diagonal subblocks.

Next, consider taking the magnitude of the value in each cell and then computing the

median for each entry across the ensemble of cubes. The median is the more appropriate

quantity because the distributions of the magnitudes are heavily skewed, just as the masses

were. We may then represent the cube containing the ensemble’s median values visually

by coloring each cell according to a continuous scheme. The resulting hierarchy is, not

surprisingly, best illustrated using a logarithmic scale. Two views of the resulting cube are

shown in Figure 18, with a color gradient of green to white to pink indicating smallest to

largest.

The cube arranges itself into the four 8-celled subcubes of different scale, which we’ve

described. This is indicated by the green quadrant, which is flanked by much paler green
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Figure 17. A representative pair of distributions of the higher order couplings.

Figure 18. The median across the ensemble of the magnitude of the transformed third order

couplings, Ai′j′k′ . Each cell represents one choice for the three indices. i′ = 1 or 2 corresponds to

the complex structure associated eigenvectors, y1 and y2, whereas i′ = 3 or 4 corresponds to the

axio-dilaton associated eigenvectors, y3 and y4. The scale is logarithmic with green representing

the smallest median magnitude and pink representing the largest. The “origin,” so to speak, is

located in the bottom right corner of the back face in the view of the cube in the left panel. The

pink 2-by-2-by-2 subcube in this corner contains the all-complex-structure subset of couplings since

the indices are all either 1 or 2. Similarly the green corner diagonally opposite contains the all-

axio-dilaton couplings. The four expected hierarchies based on the leading order behavior of the

Yukawa coupling near the conifold can be seen by the partitioning of the cube into four types of

subblocks each with cell colors in a different regime of the scale: pink, light pink/pale green, light

green, and green. A view of the cube rotated about the vertical axis is shown on the right.

(identical by symmetry) subcubes adjacent to it, the vibrant pink quadrant diagonally

across from the green corner and lastly the (identical) subcubes with pale pink and green

cells that share an edge with the pink corner.

The smallest couplings (green) do indeed reside in the all-axio-dilaton subblock, which

is located at the top left of the front face of the cube in the first view. The pink corner is

in fact the all-complex structure subblock. Its neighboring subcubes – those that share an
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edge with it (for instance those directly above and directly to the left of the pink corner in

the front face of the second view) – still have two complex structure indices because they

are in the same 2-cell thick “slice” of the cube, but have only one axio-dilaton index. The

fact that the pale colors in these neighboring subcubes are pinker/less green than the pale

subcubes that neighbor the green axio-dilaton corner means the ξ-ξ-σ couplings are larger

than the other mixed index cubic couplings, ξ-σ-σ.

The hierarchy among the quartic couplings can be visualized in much the same way,

only with a stack of four 64 celled cubes instead of a single one. We show two views of

this hypercube in Figure 19. The blocks are arranged top to bottom according to the first

index, i′, in Ai′j′k′l′ ; the top having i′ = 1 and bottom having i′ = 4. The color scheme

here is CMYK with cyan/blue representing the smallest magnitude, followed by purple,

magenta, orange, yellow, gray and finally black indicating the largest. Notice that each

cube in the stack partitions itself into quadrants of four distinct scales (just like the single

cube of third order couplings).

The top pair of blocks then has one additional index associated with the canonical

complex structure coordinate, relative to the bottom pair with the canonical axio-dilaton.

The largest magnitudes (the blackest cells) do in fact fill in the ξ-ξ-ξ subcube of the top pair

of blocks. These are the all-complex-structure quartic couplings. These corner subcubes

each share an edge with (identical) yellow subcubes. Since neighboring subcubes differ by

one index type these neighbors contain couplings with three complex structure indices and

one axio-dilaton. The fact that it is yellow means ξ-ξ-ξ-σ couplings rank second largest.

Across from the black corner subcubes but within the same 2-cell thick slice we have the

couplings that involve one more σ in place of ξ, the ξ-ξ-σ-σ couplings. The fact that they

are orange indicates they are the third largest scale.

The remaining two scales in the hierarchy are displayed by the purple corners of the top

pair of blocks in the stack and the blue corner cubes that are only present in the bottom

two blocks in the stack. The purple corners of the top pair of blocks blocks do in fact

lie diagonally opposite the black corners, making them cells containing ξ-σ-σ-σ couplings.

The subcube located in this same top back corner position in the bottom pair of blocks

in the stack differs from the purple ones of the preceding top pair in the stack by the first

index, making them the all-axio-dilaton couplings. The cells are indeed cyan/blue, making

these couplings the smallest in scale.

Now that we’ve confirmed the existence of the naively expected hierarchies we turn to

their source – the proximity to the conifold point. A priori it is possible that the divergent

contributions due to the Yukawa coupling and its derivatives could have been tempered

by some other mechanism as the conifold is approached. It is also important to assess the

degree of variation in the expected scale separation. Just as the vev of the superpotential

played the role of a random element complicating an otherwise clean analytic dependence

on the conifold distance, here too we will have a layer of noise atop the signal. The

significance of this noise, and importantly the degree to which it changes as the conifold is

approached, is not obvious at the outset.

We show the conifold distance dependence of the cubic couplings’ scale separation

visually as well. For each vacuum’s four independent 8-cell subcubes we first compute each
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Figure 19. The analogous data as that displayed in Figure 18 for the quartic couplings Ai′j′k′l′

with a logarithmic scale for the magnitudes represented with a CMYK color scheme (black being

the largest, followed by yellow, magenta then cyan). The five scales expected due to the behavior of

the Yukawa coupling near the conifold manifest themselves as the five different types of subcubes

– those with cells in the black, yellow, orange/pink, pink/purple, and blue. The origin of each of

the four cubes in the stack is at the bottom left of the front face in the view on the left, making

the all-complex-structure-couplings contained in the black corners of the top pair of cubes. The

panel on the right shows a view of the hypercube rotated about the vertical axis, with the all-axio-

dilaton couplings in the top front corner of the bottom pair of cubes in the stack, which are blue

as expected.

subcube’s mean magnitude. The mean is the appropriate measure here since the entries in

a single subcube for an individual vacuum are comparable. Each vacuum then has a list of

four positive values– the average magnitude of each of the four type of cubic couplings. We

take the logarithm of each value in the list, as well that of the magnitude of the canonical
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Figure 20. A log-log scatter plot of the vacuum coupling subcube average magnitude versus

conifold distance. Each subcube contains couplings of one of the four types: all-ξ (shown in pink), ξ-

ξ-σ (green), ξ-ξ-σ (purple), and all-σ (navy). The fact that the data points organize themselves into

approximately linear bands with increasingly negative slope for each ξ at the expense of a σ confirms

the Yukawa coupling (through its successively more singular partial derivatives) is responsible for

the hierarchy observed. The width of individual bands signals the presence/role of the random

element, the vev of the superpotentail.

vacuum coordinate, |ξvac|. The ensemble data for all four types of cubic couplings are

displayed in the single log-log scatter plot in Figure 20, with different colors used for each

of the four types.

Notice first that the colors separate into four approximately linear bands with negative

slope. This indicates that each type of coupling has an inverse power law dependence on

the canonical vacuum coordinate, |ξvac|. The data points with most negative slope, the

pink band, are the ensemble of all-complex-structure cubic couplings. Each pink point is a

different vacuum’s mean ξ-ξ-ξ–type coupling magnitude. Below this band lies the second

largest scale in the cubic couplings involving two ξ and one σ, shown in teal, followed by

purple and navy blue for the σ-σ-ξ and the all-axio-dilaton couplings, respectively. The

fact that the bands are approximately linear reflects the domination of the leading order

term in the Yukawa coupling and derivatives thereof over other terms in the expressions

for the cubic couplings.

The same analysis can be performed for the quartic couplings. We show the resulting

log-log scatter plot for the five types of couplings in Figure 21, with the same coloring

scheme descending from the largest in pink (ξ-ξ-ξ-ξ–type), and the addition of a fifth
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Figure 21. The analogous plot as that in Figure 20 for the quartic couplings. The colors are

ordered in the same manner according to the number of ξ’s in the coupling-type, descending from

all-ξ (pink), with the addition of light-blue for the last of the five types, all-σ. The self organization

of the vacuum data into the approximately linear bands of increasingly negative slope for every ξ at

the expense of a σ confirms the validity of our explanation of the hierarchies based on the behavior

of the Yukawa coupling near the conifold.

color, light-blue, for the smallest (all-axio-dilaton type). The same reasoning indicates

that the source of the hierarchy among the quartic couplings are the terms involving the

most ξ derivatives of Yukawa coupling evaluated near the conifold point. For both the

cubic and the quartic scatter plots we may view the statistical variation within a given

band as being supplied by the random element, the vev of the superpotential.

We conclude with a qualitative discussion of the remaining aspect of the structure

among the couplings that is not captured by a Random Matrix Model, for example that of

[7]. These are the pattern of nontrivial correlations we find between couplings. That is, the

ensemble of Ai′j′k′ and Ai′j′k′l′ are not accurately modeled by totally symmetric tensors

whose entries are drawn separately from independent distributions. We’ve seen that the

distribution of a particular cubic or quartic coupling is roughly Gaussian and is centered at

zero. The hierarchies discussed mean that the spread of these distributions differ in scale,

according to index type. For instance the A112 distribution is comparable to A222 in this

regard, but not to, say, A113, whose spread is smaller by comparison.

The hierarchies and the non-flat distributions themselves need not have come with

correlations between couplings. The fact that we find approximately linear scatter plots

between particular pairs of couplings renders a random approach involving independent

– 48 –



Figure 22. A representative sample of the scatter plots of pairs of cubic and quartic couplings from

the vacuum data (pink, green, and purple), as well as from the random matrix model couplings

(blue) designed as a diagnostic. Note that whereas the vacuum data exhibits sharply defined

correlations between certain pairs of couplings, all the random matrix model pairs do not. This

indicates that correlations are not merely built in by the diagnoalization of the Hessian in canonical

coordinates.

distributions – uniform or otherwise – a poor approximation to the actual coefficients. A

representative sample of the nontrivial correlations for the cubic coupling data sets are

shown eight of the nine panels in Figure 22, excluding that in the bottom right corner (in
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blue).

The pink plots on the top row show that while the pairs A111 with A122, and A112

with A222 have an approximately constant ratio across the ensemble of vacua, there is no

relationship between A111 and A222. We also find correlations in the couplings of medium

scale, namely those that mix moduli type. For instance, A144 and A133 are approximately

equal in magnitude, but opposite in sign, across models. This is shown in the teal plots in

the middle row.

A reasonable hypothesis for the source of these correlations is the transformation per-

formed to the field coordinates that simultaneously diagonalize the Hessian and canonically

normalizes the kinetic terms. This seemingly mundane step in the processing of the raw

coupling data might be suspected as being nontrivial at the level of correlations because

of the special structure of the Hessian’s eigenspace. We test this hypothesis by comparing

the results of a modified Random Matrix Model designed entirely as a diagnostic for this

purpose.

If it is the case that the transformation from the original noncanonical complex co-

ordinates builds in the patterns of correlations we observe, then an ensemble of real and

totally symmetric tensors with i.i.d. entries acted upon by the orthogonal transformation

O (defined in subsection 3) ought to exhibit correlations. Since we have 1358 O matrices,

we build the same number of random rank-3 tensors and perform the transformation,

Arandijk → Oii′O
j
j′O

k
k′A

rand
ijk . (4.22)

The result is that the transformed random couplings are uncorrelated. We’ve included a

single scatter plot of these RMM couplings as a representative example. This is the ninth

panel in Figure 22.

5 Discussion

The initial expectation that string theory would result in a unique, or nearly unique, vac-

uum state whose low energy excitations would explain the familiar properties of particle

physics has not been borne out by developments over the past few decades. Instead, a

wealth of discoveries have revealed an ever greater abundance of mathematically consistent

vacua, without any allied developments that single out one (or perhaps a few) such vacua

as physically relevant. Because of this, significant attention has shifted to statistical prop-

erties of these vacua and, more generally, to statistical properties of the easier to analyze

surrogate, random field theories in high dimensional moduli spaces.

In this paper, we have investigated the degree to which this latter surrogate faithfully

models the space of low energy field theories arising from string compactifications. We

reviewed arguments which suggest the relevance of random field theories–namely, the ran-

domizing effects of arbitrary fluxes coupled with the broad spectrum of vacuum locations

in moduli space associated with each such flux choice. We then tested this argument by

focusing our attention on one particular compactification of the type IIB string, the famous

mirror to the quintic hypersurface. We identified a class of 1358 low energy flux models
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built on this compactification, computed the scalar potential for the canonically normal-

ized scalar fields in each such model, and considered the statistical distributions of the

renormalizable coefficients in the Taylor expansions of the potentials. We confirmed previ-

ously known results for the second order coefficients – mass terms – and went on to study

the third and fourth order terms. Our main result is that we found significant deviations

from a random collection of coefficients, as illustrated in Figures 18, 19 and 22, showing

that some of the rich structure inherent in type IIB supergravity survives the randomizing

influence of flux compactifications.

The lesson, then, is that one must exercise care when invoking random field theories as

a model for the space of low energy compactified string dynamics. More particularly, our

results, and generalizations thereof to higher dimensional moduli spaces, provide a sharper

ensemble for accurate statistical modeling of the features of low energy string theory.

Going forward, these results suggest a number of research directions. For ease of

computation we have focused on a Calabi-Yau compactification with a single complex

structure modulus. One would like to acquire an understanding of the distributions we

have studied in more generic cases with higher dimensional moduli spaces. Explicit analysis

of the sort we’ve undertaken here would be difficult. However, in the vicinity of a conifold

locus – where vacua generally accumulate – we’ve reduced the statistical dependence to

the three dominant control parameters introduced earlier. These each have natural higher

dimensional generalizations and so it would be of interest to see if we can gain insight into

more general Calabi-Yau compactificaitons guided by the results we found here, and thus

avoiding direct calculation. We hope to return to this shortly. It would also be interesting

to revisit the works [7] which have investigated the quantum stability of vacua in random

high dimensional scalar field theories as a surrogate for the stability of the string landscape.

Are those results modified by studying a collection of field theories whose distribution more

closely aligns with that of low energy dynamics of string theory? We intend to return to

this question as well.
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A Near Conifold Period Expansion Coefficients

Recall that our integral and symplectic basis for mirror quintic’s period functions are

denoted Πi, with i = 0 and 3 an intersecting pair, and i = 1 and 2 the other. Π0 is the

only non-analytic period at the conifold point. It’s partner, Π3, is the period obtained by

integrating the holomorphic 3-form over the cycle that collapses. This period is nevertheless

well-behaved (it simply vanishes at the conifold). The two periods associated with the

other intersecting pair of cycles are also analytic. These are nonvanishing. The following

expansions about the conifold point at z = 1 hold,

Π1(z) =

q∑
n=0

bn(z − 1)n (A.1)

Π2(z) =

q∑
n=0

cn(z − 1)n (A.2)

Π3(z) =

q∑
n=1

dn(z − 1)n. (A.3)

The values for the coefficients were computed in Mathematica by evaluating derivatives of

the expressions for the Πi in terms of the Meijer-G functions (the Ui) at the conifold. We

used 40 digit accuracy in these computations. The values are listed in Table 3.

The remaining period, Π0, is multiple-valued at the conifold point. The cycle it is

associated with picks up one copy of its vanishing partner for each revolution around the

conifold in moduli space. This fixes the form of Π0 to 2.74. To match the branch cuts of
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n bn cn dn

0 +1.293574i 6.19502− 7.11466i 0

1 −0.150767i −1.016605 + 0.829217i −0.355881i

2 +0.0777445i 0.570733− 0.427595i 0.249117i

3 −0.0522815i −0.401804 + 0.287548i −0.194548i

4 +0.0393684i 0.312044− 0.216526i 0.161285i

5 −0.0315669i −0.256050 + 0.173618i −0.138686i

6 +0.0263447i 0.217649− 0.144896i 0.122217i

7 −0.0226046i −0.189607 + 0.124325i −0.109620i

8 0.0197941i 0.168193− 0.108868i 0.0996353i

Table 3. Expansion coefficients for period functions Π1, Π2 and Π3.

the logarithm in the expansion with that of the relevant Mejer-G (U0) in Mathematica we

must negate the argument of the logarithm. Ultimately the expression we write for Π0 is,

Π0(z) = Π3(z)

(
log(−(z − 1))

2πi
− 1

2

)
+ f(z) (A.4)

with f(z) analytic.

Its expansion coefficients, an, were computed using a recursion relation based on the

fact Π0 satisfies the Picard-Fuchs equation. This is discussed at length in section 2.3. Here

we simply tabulate the resulting values. The first three an are needed by the recursion to

generate the rest. They are obtained numerically, as discussed in section 2.3. All coefficients

were calculated using 30–40 digit accuracy computations and are listed in Table 4.

n an

0 1.07073

1 0.024708− 0.177941i

2 −0.0115108 + 0.1245584i

3 0.0065650− 0.0972742i

4 −0.0042768 + 0.0806427i

5 0.0030290− 0.0693428i

6 −0.0022701 + 0.0611087i

7 0.0017719− 0.0548102i

8 −0.0014261 + 0.0498177i

Table 4. Expansion coefficients for analytic contribution to Π0
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