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Abstract

At special loci in their moduli spaces, Calabi–Yau manifolds are endowed with discrete
symmetries. Over the years, such spaces have been intensely studied and have found a variety
of important applications. As string compactifications they are phenomenologically favored,
and considerably simplify many important calculations. Mathematically, they provided the
framework for the first construction of mirror manifolds, and the resulting rational curve counts.
Thus, it is of significant interest to investigate such manifolds further. In this paper, we consider
several unexplored loci within familiar families of Calabi–Yau hypersurfaces that have large but
unexpected discrete symmetry groups. By deriving, correcting, and generalizing a technique
similar to that of Candelas, de la Ossa and Rodriguez–Villegas, we find a calculationally tractable
means of finding the Picard–Fuchs equations satisfied by the periods of all 3–forms in these
families. To provide a modest point of comparison, we then briefly investigate the relation
between the size of the symmetry group along these loci and the number of nonzero Yukawa
couplings. We include an introductory exposition of the mathematics involved, intended to be
accessible to physicists, in order to make the discussion self–contained.
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1 Introduction — Mirror Manifolds far from the Fermat Point

Although a global description of the complex structure moduli space of many Calabi–Yau manifolds
is available, it is often very useful to consider special loci with discrete symmetries.

For example, in the context of the E8 × E8 heterotic string compactified to 4 dimensions, a
simple but powerful way to break the gauge symmetry to SU(3) × SU(2) × U(1)n is to allow
Wilson lines, which require that the compact 6d manifold is not simply connected[1][2][3]. Suitable
manifolds with nontrivial fundamental group are most easily constructed by starting out with a
simply connected space X̃ with a freely acting discrete symmetry group G, and taking the quotient
X = X̃/G, which then has π1 = G.

A more technical but equally important reason for focusing on models with a discrete symmetry
group G (or after quotienting with π1 = G), is that many interesting calculations are considerably
simpler than in the general case with trivial G. For example, in heterotic compactifications that
pass through an E6 GUT phase,[1][2] phenomenological information is contained in the 27⊗27⊗27
Yukawa couplings:

κ(α, β, γ) =

∫

CY
d6x
√
gΩijkΩ

īj̄k̄αi
īβ

j
j̄
γk

k̄ (1.1)

Here Ω is the holomorphic 3–form, and α, β, γ ∈ H1(T ) correspond to four-dimensional fields that
lie in the 27 of E6. In general, there are a large number of such integrals, and each is burdensome
to calculate. If discrete symmetries are present, then there are relations among the couplings, and
many vanish [1][4][5].

Other simplifications have been found in calculations of the stabilized values of moduli in type
IIB string backgrounds with nontrivial flux[6]. The vacua are determined by the Gukov–Vafa–
Witten superpotential:[7][8]1

W =

∫

CY
G ∧ Ω(t) ∝

∑

i

gi̟i(t) (1.2)

where gi are integers specifying the number of units of flux around the ith 3–cycle of the Calabi–Yau,
̟i(t) is the integral of Ω over the ith 3–cycle (the ith period of Ω), and t denotes the coordinates
on the complex structure moduli space. One usually finds the periods by solving certain differential
equations that they satisfy, the so–called Picard–Fuchs equations. Unfortunately the order of the
equations is in general b3(CY), which can be very large (∼ 100). It was noted in [9] that if the
manifold has discrete symmetries, then the order of the Picard–Fuchs equations is vastly reduced,
greatly facilitating their solution.

1G is a combination of the 3–form fluxes and the dilaton. So in type IIB string theory, generic nonzero flux creates
a potential for the complex structure moduli and the dilaton, but not for the Kähler moduli.
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From a mathematical point of view as well, Calabi–Yau manifolds with discrete symmetries
have been instrumental to key developments. For example, the first construction of a pair of mirror
manifolds [10] involved the prototypical family of 3–folds with discrete symmetry: the Fermat
family of quintic hypersurfaces in P4, defined in homogeneous coordinates [x0, . . . , x4] by:

Q(t) = (x0)
5 + (x1)

5 + (x2)
5 + (x3)

5 + (x4)
5 − 5tx0x1x2x3x4 = 0 (1.3)

This family (denoted V (t)) is invariant under the S5 group of permutations of the xi’s, as well
as 4 Z5 scalings2 generated by:

g1 = (1, 0, 0, 0, 4) g3 = (1, 0, 4, 0, 0) (1.4)

g2 = (1, 0, 0, 4, 0) g4 = (1, 4, 0, 0, 0)

where (a, b, c, d, e) means (x0, x1, x2, x3, x4) → (γax0, γ
bx1, γ

cx2, γ
dx3, γ

ex4) and γ5 = 1 6= γ. Be-
cause we are working in projective space, g1, g2, g3, g4 are not independent symmetries of V (t), since
g1g2g3g4 = (4, 4, 4, 4, 4) = I, implying that the symmetry group is [S5⋉(Z5)

4]/Z5. Quotienting V (0)
by (Z5)

3 (generated by particular combinations of the 4 gi’s) and resolving the orbifold singularities
appropriately produces Ṽ (0), the mirror to the Fermat quintic[10]. The single complex structure
parameter of the mirror is then t, but somewhat confusingly, V (t)/(Z5)

3 is not Ṽ (t) (the mirror
to V (t)) except at t = 0. This is because V (t) and V (t)/(Z5)

3 differ from V (0) and V (0)/(Z5)
3

respectively only in their complex structure, but moving in the complex structure moduli space
of the mirror corresponds to moving in the Kähler moduli space of the original manifold and vice
versa. See figure 1.

Figure 1: A schematic diagram of the moduli spaces of the quintic in P4 and its
mirror. The line shown in the quintic moduli space is mirror to the horizontal line
on the mirror side. But the quotient by (Z5)

3 gives the vertical line.

One can see that a mirror must exist for any nonsingular quintic in P4 by considering deforma-
tions of the conformal field theory away from the Fermat point by truly marginal operators. These
are interpreted differently on the original and mirror manifolds (complex structure and Kähler

2We use the notation: Zn = Z/nZ
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deformations switch roles), but they exist on both sides. It is clear that it is the symmetry of
the Fermat quintic that makes this construction possible, by allowing an explicit realization of the
mirror at one point in moduli space.

The goal of [14] was to find other points in moduli space where the mirror can be presented
as a resolution of a quotient by a discrete symmetry. One might guess from the simplicity of the
form of (1.3) that moving away from the Fermat family will reduce the symmetry to a subgroup
of [S5 ⋉ (Z5)

4]/Z5. Indeed this seems to be the case for local deformations, but it turns out
to be spectacularly false if one searches the moduli space sufficiently. For example, in [14] the
hypersurface V41(t) defined by:

Q41(t) = (y0)
4y1 + (y1)

4y2 + (y2)
4y3 + (y3)

4y4 + (y4)
4y0 − 5ty0y1y2y3y4 = 0 (1.5)

was found to possess a Z41 scaling symmetry generated by (1, 37, 16, 18, 10) where the entries now
indicate nontrivial 41st roots of unity. It is worthwhile to recall the reasoning that leads to the
form of (1.5). The idea is to implement the (Z5)

3 quotient of the Fermat quintic by making an
unusual, apparently ill-defined, change of variables:

(x0, x1, x2, x3, x4)→ (y
4/5
0 y

1/5
1 , y

4/5
1 y

1/5
2 , y

4/5
2 y

1/5
3 , y

4/5
3 y

1/5
4 , y

4/5
4 y

1/5
0 ) (1.6)

Generally, the fractional powers would require, at the very least, choices of branch cuts to make the
map and its inverse well defined. However, it is easy to see that away from coordinate hyperplanes,
appropriate coordinate identifications make this unnecessary. From (1.6) it is immediate that
imposing a (Z5)

3 group of identifications on the (x0, x1, x2, x3, x4)–the very same group, in fact,
that yields the mirror Calabi–Yau family–the map from the y’s to the x’s becomes well defined.

However, this is not yet sufficient for (1.6) to be one–to–one. By solving for the inverse, we
find, for example:

y0 = x
256
205
0 x

−64
205
1 x

16
205
2 x

−4
205
3 x

1
205
4 (1.7)

and cyclic permutations

which requires further identifications be made on the yi’s. One can check that (1.7) is well defined
if one identifies yi with its image under the Z41 scaling symmetry indicated above. This suggests a
relationship:

VFermat(t)

(Z5)3
∼ V41(t)

Z41
(1.8)

But since the fractional change of variables is only invertible away from coordinate hyperplanes,
the relationship in (1.8) is not a biholomorphism. It was argued in [14] using the methods of
toric geometry, that the two quotients are nevertheless topologically identitical, representing two
parametrizations of the complex structure moduli space of the quintic mirror, at different points in
the Kähler moduli space. The relationship (1.8) suggests that by focusing on points in the quintic
moduli space that have a maximal discrete symmetry group in their local neighborhood, and by
then quotienting by this maximal group, we generate the mirror partners to these manifolds. Since
the initial manifolds differ by deformations of their complex structures, their mirrors would then
differ by deformations of their Kahler structures. In particular, this would mean that the Picard–
Fuchs equations for the periods of the holomorphic 3–form of the Z41 quotient, or equivalently for
those periods of V41(t) invariant under Z41, should agree with standard Picard-Fuchs equation on
the mirror quintic. In [14] a tedious calculation using the Griffiths–Dwork technique on V41(t)/Z41

4



Q(t) Scaling Symmetries Action

1 1

5

(
a5 + b5 + c5 + d5 + e5

)
− tabcde (Z5)

3 (4, 1, 0, 0, 0), (4, 0, 1, 0, 0), (4, 0, 0, 1, 0)
2 1

5

(
a4b+ b4c+ c4d+ d4e+ e4a

)
− tabcde Z41 (1, 37, 16, 18, 10)

3 1

5

(
a4b+ b4c+ c4d+ d4a+ e5

)
− tabcde Z51 (1, 47, 16, 38, 0)

4 1

5

(
a4b+ b4c+ c4a+ d5 + e5

)
− tabcde Z5 × Z13 (0, 0, 0, 4, 1), (1, 9, 3)

5 1

5

(
a4b+ b4c+ c4a+ d4e+ e4d

)
− tabcde Z3 × Z13 (0, 0, 0, 1, 2), (1, 9, 3)

6 1

5

(
a4b+ b4a+ c5 + d5 + e5

)
− tabcde (Z5)

2 × Z3 (0, 0, 4, 1, 0), (0, 0, 4, 0, 1), (1, 2, 0, 0, 0)

Table 1: Six 1–parameter families of quintic hypersurfaces with discrete symmetries.

was shown to yield:

[(
1− t5

) d4

dt4
− 10t4

d3

dt3
− 25t3

d2

dt2
− 15t2

d

dt
− t
] ∫

Ω = 0 (1.9)

which is precisely the Picard–Fuchs equation satisfied by the periods of the holomorphic 3–form of
the mirror family Ṽ (t) [12].

It is easily seen that the technique illustrated by (1.6) offers numerous variations, providing a
rich set of new enhanced symmetry loci. For example, one can consider:

(x0, x1, x2, x3, x4)→ (y0, y
4/5
1 y

1/5
2 , y

4/5
2 y

1/5
3 , y

4/5
3 y

1/5
4 , y

4/5
4 y

1/5
1 ) (1.10)

which leads to a family with another unfamiliar symmetry group, Z51. Several other examples were
tabulated in [14, 19], which we repeat in table 1.

Given how useful loci with discrete symmetry have been in the development of our understanding
of Calabi–Yau moduli spaces, new symmetric families are of great interest. They expand the range
of examples to which analytic methods can be applied, and provide new testing grounds for mirror
symmetry, rational curve counts, moduli stabilization, and phenomenology.

To orient our analysis, it is interesting to ask where in moduli space these new loci reside; for
example, where is the V41(t) family in relation to the Fermat locus? We might attempt a linear
transformation x(y) on Q41(t) to bring it into the form:

Q41 = (y0)
5 + (y1)

5 + (y2)
5 + (y3)

5 + (y4)
5 + . . . = 0 (1.11)

where the ellipsis indicates a specific combination of quintic monomials at most cubic in any of the
yi’s. But this brings a more pressing issue into sharp relief. Notice that such a linear transformation
would obscure the presence of the Z41 symmetry. Similarly, it is clear that an arbitrary linear
transformation of the Fermat quintic would make the (Z5)

3 symmetry significantly less obvious
because the symmetry would no longer act diagonally on the homogeneous coordinates.

This may lead one to wonder whether the Z41 symmetric family and the Fermat family are even
distinct loci. Perhaps Z41 acts nondiagonally on (1.3), and (Z5)

3 nondiagonally on (1.5). To show
that this is not the case, we write the polynomial defining the Fermat family as: 1

5Q0 − tQ∞ = 0,
where Q0 = (x0)

5+(x1)
5+(x2)

5+(x3)
5+(x4)

5 is the Fermat polynomial and Q∞ = x0x1x2x3x4. If
the symmetry groups of Q0 and Q∞ are denoted G0 and G∞ respectively, then the automorphism
group of a generic member of the Fermat family is just G0 ∩ G∞. In [15] it was shown that
G0 = S5 ⋉(Z5)

4, i.e the automorphisms of the Fermat quintic are permutations of the homogeneous
coordinates, and scalings by 5th roots of unity, excluding an overall scaling which is trivial in
projective space.3 On the other hand G∞ = S5 ⋉ (C∗)4, i.e. we can permute the coordinates, and

3The result: lemma 3.2 of [15] is rather more general. For d ≥ 3 and n ≥ 2 and (d, n) 6= (3, 2) or (4, 3),
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scale them. The full automorphism group of a generic member of the pencil is then G = S5 ⋉ (Z5)
3,

i.e. the subgroup of G0 ∩ G∞ that scales 1
5Q0 − tQ∞ by an overall factor. In other words there

are no more symmetries than those found above by inspection. G is a finite group with 53 × 5!
elements, so it has no subgroup of order 41 or 51. It follows that the families with Z41 and Z51

symmetries cannot be isomorphic to the Fermat family.
The new loci are thus distinct from the Fermat family, and therefore constitute a new probe

for enriching our understanding of Calabi–Yau manifolds and their moduli spaces. Utilizing this
probe requires that we’re able to perform the basic calculations of periods, familiar from studies
of Fermat families, which contain essential information about the complex structure and geometric
monodromy of the families. The purpose of this paper is to set up the formalism for doing so.

Plan of the Paper

In section 2, we review the aspects of the cohomology of families of hypersurfaces required to
understand the Picard–Fuchs equations and the Griffiths–Dwork procedure for finding them. The
expert reader will find much in this section that is already familiar. However, because our results
and, in particular, the way they differ from [9], depend critically on this background, a self-contained
summary is essential. We emphasize those aspects which play key roles in the sections that follow.
Some examples and further aspects of the formalism are developed in appendices C and D.

In section 3 we derive an alternative to the Griffiths–Dwork method for symmetric hypersurfaces
in Pn which greatly reduces the labor of computation. The technique is similar in its details to that
applied to the quintic 3–fold by Candelas, de la Ossa and Rodriguez–Villegas [9], but our results
improve on [9] in three key respects:

• Here (in Section 3.1) the technique is derived in a rigorous fashion from fundamental results
of Griffiths [16].

• In [9] it is claimed that these methods compute differential equations whose solutions are
periods of the holomorphic 3–form. By carefully relating the method to the work of Griffiths
[16] (reviewed in section 2), we show that this is generally not true. Instead, we show that
most of the resulting equations are satisfied by other elements of the period matrix, i.e.
integrals of elements of H3(X,C) not contained in H3,0(X).

• The technique involves constructing diagrams which display the relevant relations among
periods in a useful way. We find an algorithm for sytematically constructing these diagrams,
summarized in section 3.1.2.

We then apply the procedure to calculate the Picard–Fuchs equations for the Z41–symmetric
family of 3–folds. Other families can be treated in the same way, and the results for the Z51 case
are tabulated in appendix A.

To give a feel for the new loci and to see another way in which they differ from the Fermat
family, section 4 examines the effect of the discrete symmetries on the Yukawa couplings of the
6 quintics in table 1. We find a somewhat surprising relation between the number of nonzero
couplings and the size of the symmetry group.

Finally, in appendix B we indicate how to extend the technique to symmetric Calabi–Yau
hypersurfaces in weighted projective spaces, and we compute the Picard–Fuchs equation for the
example of a Fermat–type hypersurface in WP[41,48,51,52,64][256].

the symmetries of the degree d Fermat hypersurface in Pn are Sn+1 ⋉ (Zd)
n. In words, a semi–direct product of

permutations and scalings by d’th roots of unity.
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2 Cohomology of Hypersurfaces

The Calabi–Yau manifolds we will consider are all hypersurfaces in Pn, i.e. submanifolds of Pn

defined by the vanishing locus of a single homogeneous polynomial.4 This is a rather special choice,
which can be generalized in many ways, but is particularly convenient to analyze. The goal of this
section is to review a useful way to get our hands on elements of the Dolbeault cohomology groups
of such a hypersurface.

We consider a smooth hypersurface V ⊂ Pn defined by the zero locus of an irreducible degree
l polynomial Q(x) in the homogeneous coordinates [x0, . . . , xn]. As might be expected, it is hard
to set up coordinates on V and describe differential forms on the hypersurface directly. Instead we
make use of a beautiful generalization of the Cauchy integral formula due to Griffiths [16].

Starting from Cauchy’s theorem

1

2πi

∮

C

P (z)

Q(z)
dz =

∑

i

wi(ith Residue) (2.1)

where the sum is over the poles enclosed by the contour C that winds around the ith pole wi times,
and the residue is the coefficient of the 1/z term in a Laurent expansion of f(z) = P (z)

Q(z) about the
pole. Griffiths interpreted the right hand side as the integral of a 0–form over a 0–cycle on the
Riemann sphere P1. The 0–cycle (which we suggestively denote by V ) is the set of poles of P (z)

Q(z)dz,
each weighted by the number of times the contour C winds around, and the 0–form is the value of
the residue at each pole. Notice that adding an exact rational 1–form (whose poles are contained
in V ) to the left hand side integrand makes no difference, so we can think of the residue as a map:

Res : H(V )→ H0(V,C) (2.2)

where H(V ) is like the de Rham cohomology group H1(P1 − V,C), but using only rational forms.
The purpose of generalizing this story to higher dimensions is to represent (n − 1)–forms on V
(which becomes a hypersurface), as residues of rational n–forms on the complement Pn − V . The
latter are considerably easier to work with.

2.1 Some Results of Griffiths

Let An(V ) be the space of rational n–forms on Pn with polar locus V . Then we define H(V ) =
An(V )/dAn−1(V ), i.e. the de Rham cohomology of rational n–forms on Pn − V . 5 The residue
map Res : H(V )→ Hn−1(V,C) is then defined by the property :

1

2πi

∫

T (γ)
ϕ =

∫

γ
Res(ϕ) (2.3)

Here ϕ ∈ H(V ), γ is an (n−1)–cycle in V and T (γ) is a tubular neighborhood of γ in Pn−V . More
precisely, T (γ) is a circle bundle over γ with an embedding into Pn−V such that it encloses γ. For
small enough radii, any two such bundles are homologous in Hn(Pn − V,Z), so the construction is
unique. A rather abstract way to state the definition (2.3) is that Res is the dual of the so–called
Leray coboundary map: Hn−1(V,Z)→ Hn(Pn − V,Z) which sends [γ] to [T (γ)].

4In appendix B we generalize this slightly to hypersurfaces in weighted projective space.
5Note that ∂An(V ) = 0 since n is the maximal holomorphic degree of a form on Pn, and ∂̄An(V ) = 0 because

rational forms are by definition holomorphic. In defining H(V ) there is therefore no need to restrict the numerator
of the quotient to closed forms only — they are all closed.

7



A more concrete description of the residue map can be given as follows. Let ϕ be a smooth
differential form on Pn, except for possible singularities on V . To indicate the order of the singu-
larities, suppose that for some positive integer k, fkϕ and fk−1df ∧ ϕ are smooth everywhere if
f = 0 is a local defining equation for V . In terms of local (affine) coordinates z1, . . . , zn, we have
ϕ = ϕ(z)dz1 ∧ . . .∧ dzn, but close to the hypersurface (i.e. near f = 0), we can choose coordinates
(z1, . . . , zn−1, f) and write:

ϕ =
df ∧ α
fk

+
β

fk−1

= − 1

k − 1
d

(
α

fk−1

)
+
β + 1

k−1dα

fk−1
(2.4)

where α and β are smooth forms and do not contain df . This expression is only valid in a single
patch, but by making use of a partition of unity, one can show that for k 6= 1, ϕ = dψ + η where
ψ and η are globally defined smooth forms with poles of order k − 1 along V . It follows that up to
an exact form, ϕ can be reduced to a form with a pole of order 1 along V :

ϕ− d(ψ1 + . . . + ψl−1) =
α′ ∧ df

f
+ β′ (2.5)

where ψa has a pole of order k − a along V . The residue is then the coefficient of df/f restricted
to the hypersurface:

Res(ϕ) = α′|V (2.6)

This is precisely analogous to the usual definition of the residue as the coefficient of the 1/z term
in the Laurent expansion. Note that the residue of a rational n–form with k = 1 is necessarily
holomorphic, but since the construction above uses a partition of unity, residues of forms with
k > 1 are only smooth in general.

Having defined the residue map, we now need to explore its properties. In particular, we have
the following question: which rational n–forms on Pn− V map to which cohomology classes on V ?
The answer is provided by another beautiful theorem of Griffiths, in preparation for which we must
introduce some further formalism.

Let An
k(V ) ⊂ An(V ) denote the rational n–forms on Pn − V with poles of order k along V . By

analogy with H(V ), we can define the cohomology groups:

Hk(V ) =
An

k(V )

dAn−1
k−1(V )

(2.7)

It is important to note that two such groups Hk(V ) and Hk′(V ) generally have a nonzero intersec-
tion. If for example we take k = 1 and k′ = 2, the statement is just that there are rational forms
with double poles that differ from rational forms with simple poles only by exact rational forms
with simple poles. We will explicitly delineate such intersections shortly, but notice that what we’re
speaking of here is different from the reduction of pole order in the residue construction. There we
were interested in lowering the pole order by adding smooth forms. Here we are only allowed to
add rational forms. We will return shortly to the question of when such a reduction is possible.

For the moment, let us follow Griffiths and write the groups Hk(V ) as a sequence of inclusions:

H1(V ) ⊂ H2(V ) ⊂ · · · · · · ⊂ Hn(V ) = H(V ) (2.8)

8



The nontrivial claim here is the final equality: Hn(V ) = H(V ), the proof of which can be found
in [16]. A decomposition like (2.8) with inclusions (as opposed to a direct sum decomposition) is
called a filtration, and we will refer to (2.8) as the filtration of H(V ) by order of pole.

There is another filtration we are interested in, the so–called Hodge filtration of Hn−1(V,C),
given by:

F
n−1,n−1(V ) ⊂ F

n−1,n−2(V ) ⊂ · · · · · · ⊂ F
n−1,0(V ) = Hn−1(V,C) (2.9)

where F
a,b(V ) = Ha,0(V )⊕Ha−1,1(V )⊕ . . .⊕Hb,a−b. This time the equality on the right hand side

is just the Hodge decomposition of cohomology, which holds for all Kähler manifolds:

Hn−1(V,C) = Hn−1,0(V )⊕Hn−2,1(V )⊕ . . .⊕H0,n−1(V ) (2.10)

Any algebraic submanifold of Pn (a hypersurface for example) is necessarily Kähler, so we are not
imposing any new restriction.

The essence of Griffiths’ theorem is that the residue map acts in a very nice way between the
order of pole filtration and the Hodge filtration:

H1(V ) ⊂ H2(V ) ⊂ · · · · · · ⊂ Hn(V ) = H(V )
↓ Res ↓ Res ↓ Res ↓ Res

F
n−1,n−1(V ) ⊂ F

n−1,n−2(V ) ⊂ · · · · · · ⊂ F
n−1,0(V ) = Hn−1(V,C)

(2.11)

We have already confirmed the far left part of the diagram: rational n–forms on Pn with poles of
order 1 on V map to holomorphic (n− 1)–forms on V , i.e. elements of Hn−1,0(V ) = F

n−1,n−1(V ).
The remainder of the proof can be found in [16]. This is the answer we were looking for to the
question: which (n − 1)–forms on V are the residues of which n–forms on Pn − V ? The order of
the pole of the form on Pn − V (and hence the degree of the numerator) determines which of the
Hodge filtrants the residue lies in.

We can say more. It is clear when a form in F
n−1,n−2 is also in F

n−1,n−1, but not so clear yet
when a form in H2(V ) is also in H1(V ). In words: we know from (2.5) that the order of the pole
of a form can be lowered arbitrarily by adding an appropriate smooth form, but when can this
decrease be accomplished using only rational forms? The key to finding out is to look more closely
at rational n–forms on Pn − V . Working in homogeneous coordinates [x0, . . . , xn], one can show
that any such n–form ϕ can be written:6

ϕ =
P (x)

Q(x)k
Ω0, Ω0 =

n∑

i=0

(−1)ixidx0 ∧ . . . d̂xi . . . ∧ dxn (2.12)

where Q(x) = 0 defines the hypersurface V , and P (x) is a homogeneous polynomial obeying
degP = k degQ − (n + 1) in order that ϕ is well defined on projective space. It follows that a
rational n–form in Pn−V can be specified by an element of C[x0, . . . , xn]kl−(n+1), i.e. a polynomial
of degree kl − (n + 1) with complex coefficients, where l = degQ. The information we need is
contained in the formula:7

Ω0

Q(x)k+1

n∑

i=0

Pi(x)
∂Q(x)

∂xi
=

1

k

Ω0

Q(x)k

n∑

i=0

∂Pi(x)

∂xi
+ exact rational forms (2.13)

6This is Corollary 2.1 of [16]. The hat on the ddxi indicates that it should be left out of the wedge product.
7Formula 4.5 of [16]
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Thus the order of pole of a form ϕ = P (x)
Q(x)k Ω0 ∈ Hk(V ) can be lowered using a rational form iff

P (x) =
∑n

i=0 Pi(x)
∂Q(x)
∂xi for some polynomials Pi(x). The ideal generated by [∂0Q(x), . . . , ∂nQ(x)]

is called the Jacobian ideal of Q(x), and denoted J(Q). So the order of pole can be lowered iff the
numerator is in J(Q).

This relates to the Hodge filtration as follows. If we quotient a filtrant (a single group in the
filtration) by the filtrant to its left, we find F

n−1,k(V )/Fn−1,k+1(V ) = Hk,n−1−k(V ). We have just
seen that for the order of pole filtration we have:8

Hk(V )

Hk−1(V )
=

C[x0, . . . , xn]kl−(n+1)

J(Q)
(2.14)

So the residue map induces an isomorphism:

C[x0, . . . , xn]kl−(n+1)

J(Q)
→ Hn−k,k−1(V ) (2.15)

One further note of importance is the following. The image of the map (2.15) in Hn−k,k−1(V )
is called the primitive cohomology of V , and denoted PHn−k,k−1(V ). If in (2.11) we replace the
Hodge filtrants F

a,b(V ) with their analogs constructed from primitive cohomology groups (denoted

F
a,b
0 (V )), then the residue maps become isomorphisms.

This is the most we will say about the general properties of the residue map. Later we will
consider the simplifications that arise if V has discrete symmetries.

2.2 Example: Quintic Calabi–Yau 3–folds

Consider the case n = 4, l = 5. Since l = n+ 1 is precisely the condition c1 = 0, V is a Calabi–Yau
3–fold. The Hodge filtrants are:

F
3,3
0 (V ) = PH3,0(V )

F
3,2
0 (V ) = PH3,0(V )⊕ PH2,1(V )

F
3,1
0 (V ) = PH3,0(V )⊕ PH2,1(V )⊕ PH1,2(V )

F
3,0
0 (V ) = PH3,0(V )⊕ PH2,1(V )⊕ PH1,2(V )⊕ PH0,3(V )

The isomorphism with the filtration given by order of pole is:9

H1(V ) ⊂ H2(V ) ⊂ H3(V ) ⊂ H4(V ) = H(V )
↓ Res ↓ Res ↓ Res ↓ Res ↓ Res

F
3,3
0 (V ) ⊂ F

3,2
0 (V ) ⊂ F

3,1
0 (V ) ⊂ F

3,0
0 (V ) = H3(V,C)

(2.16)

Now look for example at Res: H2(V ) → F
3,2
0 (V ). Notice that [α2] ∈ H2(V ) maps to F

3,3(V ) ⊂
F

3,2(V ) iff [α2] = [α1] where α1 has a pole of order 1, i.e. if α2 = α1 + dη. From [16], this is

8A common alternative notation for the Jacobian ring C[x0,...,xn]m
J(Q)

is Rm
Q .

9For odd dimensional hypersurfaces we have PHp,q(V ) ≃ Hp,q(V ). In the case of Calabi–Yau 3–folds this can be
seen as follows: One can define PHp,3−p(V ) alternatively as the kernel of the Lefschetz map L : Hp,3−p(V ) → H5(V )
defined by L([φ]) = [J ∧ φ], where J is a Kähler form on V . For a Calabi–Yau 3–fold with SU(3) holonomy, b5 = 0,
so the kernel of L is the whole of Hp,3−p(V ).
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equivalent to P ∈ J(Q), where α2 = P
Q2 Ω0. We therefore have:

C[x0, . . . , x4]5
J(Q)

≃ H2(V )

H1(V )
≃ F

3,2
0 (V )

F
3,3
0 (V )

≃ PH2,1(V ) (2.17)

Similarly, we have:

C[x0, . . . , x4]0
J(Q)

≃ H1(V )

H0(V )
≃ F

3,3
0 (V ) ≃ PH3,0(V ) (2.18)

C[x0, . . . , x4]10
J(Q)

≃ H3(V )

H2(V )
≃ F

3,1
0 (V )

F
3,2
0 (V )

≃ PH1,2(V ) (2.19)

C[x0, . . . , x4]15
J(Q)

≃ H4(V )

H3(V )
≃ F

3,0
0 (V )

F
3,1
0 (V )

≃ PH0,3(V ) (2.20)

The maps are given explicitly by:

C[x0, . . . , x4]5n

J(Q)
∋ [P ]←→ (3− n, n) piece of Res

(
P

Qk
Ω0

)
∈ PH3(V,C) (2.21)

where k = deg P
5 + 1. This is just the standard and often–used association between 5nth order

monomials and elements of H3−n,n(V ). For instance, the isomorphism (2.17) (n = 1) has a familiar
interpretation as two different ways of looking at deformations of complex structure: on the one
hand as an element of H2,1(V ) and on the other as an additional monomial term in the defining
equation of the hypersurface V .

As an example of the use of the above formalism, we derive a common expression for the unique

holomorphic 3–form Ω = Res
(

Ω0
Q

)
. Working in the patch x0 6= 0, we can scale the homogeneous

coordinates so that x0 = 1, and therefore Ω0 = dx1 ∧ dx2 ∧ dx3 ∧ dx4 = dz1 ∧ dz2 ∧ dz3 ∧ dz4

where zi = xi/x0. Writing Q as Q(x0, x1, x2, x3, x4), we define f = Q(1, z1, z2, z3, z4), and so

Ω = Res
(

dz1∧dz2∧dz3∧dz4

f

)
. Next we replace the coordinate z4 with f , and using df = ∂f

∂zi dz
i, find:

Ω = Res

(
dz1 ∧ dz2 ∧ dz3 ∧ df

f ∂f
∂z4

)
=

dz1 ∧ dz2 ∧ dz3

∂f
∂z4

∣∣∣∣∣
V

(2.22)

which can be found in [1],[4],[11] for example. It is more difficult to identify forms with monomials
of higher order, but explicit expressions are derived in [4]. Aside from the case of the holomorphic
3–form, the residues are generally not of pure Hodge type, i.e. they are not elements of any single
group Hp,3−p(V ). This conclusion requires modification if V possesses discrete symmetries.

Hodge Type of the Non–Holomorphic Forms

We saw that for a generic quintic in P4, the 3–forms corresponding to monomials of order 5n
live in the (3 − n)’th Hodge filtrant: F

3,n = H3,0 ⊕ . . . ⊕ H3−n,n. In the presence of a discrete
scaling symmetry, which is also a symmetry of the holomorphic 3–form,10 we can make a stronger
statement.

10In the mathematics literature, symmetries that preserve the holomorphic 3–form are called symplectic automor-

phisms.
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For example, let [ω] ∈ H3,0 ⊕ H2,1 be a class corresponding to a 5th order monomial. If Ω is
the holomorphic 3–form, and ω2,1 a ∂̄–closed (2, 1)–form, we can write [ω] = c[Ω] + [ω2,1] for some
constant c ∈ C. Now consider the integral:

∫
ω ∧ Ω = c

∫
Ω ∧ Ω (2.23)

The right hand side is manifestly invariant, so if [ω] transforms by a nontrivial scaling, then c = 0.
This however is just the same as saying that [ω] ∈ H2,1. A similar argument shows that the
noninvariant 10th order monomials correspond to classes in H2,1 ⊕H1,2 rather than the full F

3,1.

2.3 Families of Hypersurfaces and the Period Matrix

Say we allow Q(x) and hence V to depend on a parameter t which takes values in a space T . If
we vary t smoothly from t1 to t2 and do not allow V to become singular along the way, then V (t1)
and V (t2) are diffeomorphic, but not in general biholomorphic to one another.11 Our interest is in
the cohomology of the hypersurface V , and in particular in the Hodge decomposition.

Hn−1(V,C) =
⊕

p+q=n−1

Hp,q(V ) (2.24)

As we move around in complex structure moduli space, the Hodge decomposition changes because
what we mean by a (p, q)–form changes. However, one can always define a so–called topological
basis of Hn−1(V,C) that does not change (at least under local deformations). This basis consists of
the duals of a basis of topological cycles in Hn−1(V,Z).12 The purpose of this section is to study in
concrete terms how the Hodge basis varies with respect to the ‘anchor’ of the topological basis.13

We can phrase the discussion in terms of a fixed real differentiable manifold X diffeomorphic
to V (t), and a basis of t–dependent (n − 1)–forms Ωi

X(t) ∈ Λn−1(X,C) where i = 0, . . . , b3 − 1.
We can choose the forms Ωi

X(t) to have fixed bidegree (p, q) in the complex structure at point t,
so that their cohomology classes provide the Hodge decomposition for each t ∈ T . But because
residues are generally not of pure Hodge type (see (2.11)), it makes more sense to work in terms
of the Hodge filtration. In other words, we choose forms Ωi

X(t) to be elements of F
n−1,p(V ) rather

than Hn−1−p,p(V ).
Next we define the period matrix of V (t) as the integrals of Ωi

X(t) over a topological basis of
Hn−1(X,Z). Denoting such a basis γi, i = 1, . . . , 2(n − 1), the periods are:

∫

γi

Ωj
X(t) (2.25)

It is these integrals that contain the information about how the Hodge structure varies with t. We
would therefore like to differentiate them with respect to t. It might seem naive to just differentiate
under the integral sign, but in fact that is the correct thing to do. Technically we are looking for
a connection on the bundle over T whose fibers are Hn−1(V (t),C) (the so–called Hodge bundle),
but this bundle admits a flat connection ∇t known as the Gauss–Manin connection that can be

11The complex structure we are talking about on V (t) is the one inherited from the embedding in Pn.
12We make use of the inclusion: Hn−1(V, Z) →֒ Hn−1(V, C)
13This subject has been formulated in a more abstract fashion, under the name variations of Hodge structure. An

excellent and readable introduction can be found in [17].
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defined by the property:

∇t

∫

γi

Ωj
X(t) =

∫

γi

d

dt
Ωj

X(t) (2.26)

Notice that by repeatedly differentiating Ωj
X(t) we generate a sequence of representatives of classes

in Hn−1(X,C). Since dimHn−1(X,C) is finite (for X compact) we must eventually find that some
derivative of Ωj

X(t) can be related to lower derivatives up to exact forms, which disappear upon

integration. It follows that each column of the period matrix, i.e. the periods
∫
γi

Ωj
X(t) for fixed

j, obeys a differential equation in the variables t, called a Picard–Fuchs equation. By comparing
these equations, we will be able to distinguish between different families of Calabi–Yau manifolds.

First though, despite the simplification of (2.26), we still have a hurdle to overcome. The
problem is that in the section 2 we worked with t–dependent hypersurfaces in Pn rather than an
underlying differentiable manifold X with t–dependent (n− 1)–forms. Given a (n− 1)–cycle (and
hence a period) in V (t1), what is the corresponding (n− 1)–cycle in V (t2)?

The conclusion we will find is that we should use the tools of section 2 to rewrite the period
matrix as integrals of rational forms on the complement of V ; the reader interested more in the
final result than the technical details may want to skip directly to the result, (2.30).

We would like to have a precise notion of cycles varying smoothly with t. To this end, consider
π : X ′ → T a differentiable proper mapping of differentiable manifolds, with rank = dimT , so that
Xt = π−1(t) is diffeomorphic to a compact manifold X for any t. We are interested in the case
where Xt inherits a complex structure from X ′, and is biholomorphic to V (t). The Ehresmann
theorem implies that the fibration X ′ → T is locally trivial, so we can think of X ′ as a fiber bundle
with base T . We can then specify an Ehresmann connection on X ′ → T , i.e. a decomposition of
the tangent space TX ′ into vertical and horizontal subspaces T hX ′ and T vX ′ respectively. This
defines a notion of parallel transport along a path in T . So given a cycle γ(t1) ∈ Xt1 and a
smooth path linking t1 and t2, an Ehresmann connection defines a cycle γ(t2) ∈ Xt2 . Although
γ(t2) depends on the path taken in T as well as the choice of connection, [γ(t2)] ∈ Hn−1(Xt2 ,Z)
(locally) does not. Moreover, if α(t) : Xt → X is a diffeomorphism, then in Hn−1(X,Z) we have:
[α(t1)γ(t1)] = [α(t2)γ(t2)].

To summarize, one can choose a basis of Hn−1(V (t0),Z), and parallel transport it using an
Ehresmann connection to obtain a (locally) unique horizontal family of homology classes. How
does this help us? It means we can rewrite the period integrals:

∫

γi

Ωi
X(t) =

∫

γi(t)
Ωi

V (t)(t) (2.27)

where for example Ω0
V (t)(t) is the holomorphic (n − 1)–form on V (t), found using the techniques

that lead to (2.22). We have transformed the integrand to something we know how to work with,
but at the expense of introducing t dependence into the cycle over which we are integrating. How
do we then differentiate the periods with respect to t? The answer is to represent Ωi

V (t)(t) as a
meromorphic form on Pn:

∫

γi(t)
Ωi

V (t)(t) =

∫

T (γi(t))

P

Q(t)k
Ω0 (2.28)

which is just to say that Ωi
V (t)(t) = Res

(
PΩ0

Q(t)k

)
. For example, the case i = 0 is the holomorphic

13



(n− 1)–form:

∫

γi(t)
Ω0

V (t)(t) =

∫

T (γi(t))

Ω0

Q(t)
(2.29)

For i 6= 0, there will be a nontrivial P and a higher power of Q(t) in the denominator.
Now for t in a sufficiently small neighborhood of t0, T (γi(t)) is homologous to T (γi(t0)) in

Hn(Pn − V,C). For the case of a single parameter, we can then differentiate as follows:

d

dt

∫

T (γi(t))

PΩ0

Q(t)k
=

d

dt

∫

T (γi(t0))

PΩ0

Q(t)k
= −k

∫

T (γi(t0))

PΩ0

Q(t)k+1

dQ

dt
(2.30)

If r = dimC (Hn(V )) = dimC

(
Hn−1(V,C)

)
, only the first r− 1 derivatives can be linearly indepen-

dent. Therefore the periods must satisfy a linear ordinary differential equation of order at most r
— this is a Picard–Fuchs equation.

2.4 Picard–Fuchs Equations à la Griffiths–Dwork

The tools introduced above provide a systematic, but usually tedious, technique for calculating
Picard–Fuchs equations, outlined for example in [18]:

1. Differentiate the period r times. If Q(t) is linear in t, the one finds:

dr

dtr

∫

T (γi(t))

PΩ0

Q(t)k
=

∫

T (γi(t))

(k + r − 1)!

(k − 1)!

Ω0

Q(t)k+r
P

(
−∂Q
∂t

)r

(2.31)

2. Write P
(
−∂Q

∂t

)r
explicitly as an element of J(Q), i.e. as

∑
iAi(x)

∂Q
∂xi

where Ai(x) are

polynomials of degree (n + 1)(r + k − 1)− n.

3. Use the formula 4.5 from [16] to reduce the order of the pole:

Ω0

Qk+1

n∑

i=0

Ai
∂Q

∂xi
=

1

k

Ω0

Qk

n∑

i=0

∂Ai

∂xi
+ d(· · · ) (2.32)

4. Repeat the above steps until the rth derivative has been expressed in terms of lower derivatives.
This is the required equation.

Appendix C contains two worked out applications of the above steps: the Hesse family of elliptic
curves and the Fermat family of quintics in P4.

Parameterizing the Moduli Space

Conventionally, the Picard–Fuchs equation satisfied by periods of the holomorphic 3–form on the
Fermat quintic or its mirror, is written as in section 2.4:

[
θ4 − x

(
θ +

1

5

)(
θ +

2

5

)(
θ +

3

5

)(
θ +

4

5

)]
tP1 = 0 (C.15)
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Recall that x = t−5 and θ = x d
dx , while t is the parameter of the Fermat family:

Q(t) =
1

5

(
a5 + b5 + c5 + d5 + e5

)
− tabcde (C.11)

For some purposes this is rather convenient; for example, since (C.15) is in generalized hypergeo-
metric form, one can make use of standard results about the monodromy of its solutions.[22]

However, the coordinate x is not particularly useful for analysing the equations satisfied by
the other periods. To see why, we review the usual argument for the change of variables. It is
noted14 that the transformation t → e2πi/5t can be undone by a simple change of coordinates:
xi → e−2πi/5xi, where xi is any of the homogeneous coordinates [x0, x1, x2, x3, x4] = [a, b, c, d, e].
Since this transformation is holomorphic, it follows that the hypersurfaces specified by t and by
e2πi/5t are biholomorphic. The natural coordinate on the complex structure moduli space therefore
seems to be t5 or t−5.

Let us then take x = t5, and consider the following period of a (2, 1)–form:

∫
a3b2

Q(x)2
Ω0 =

∫
a3b2

[
1
5 (a5 + b5 + c5 + d5 + e5)− x1/5abcde

]2 Ω0 (2.33)

Suppose we want to interpret its monodromy around x = t = 0. We note that circling around
x = 0 corresponds to t→ e2πi/5t, which can then be undone by a→ e−2πi/5a. The form as a whole
receives a scaling by e2πi/5 = e−

4
5
2πi/5, coming from the a3 in the numerator, as well as the factor

of da in Ω0. If on the other hand we decided to absorb the change into a scaling of b instead of
a, then the form would scale by a different factor. Working in terms of x, it is therefore tricky to
determine what part of the monodromy of the periods comes from geometric monodromy of the
cycles, and what part comes from the scalings of the forms.

This is not an issue for the holomorphic 3–form (or its derivatives), and hence does not arise in
discussions of the quintic mirror. In that case, the numerator of the form is some power of abcde, so
the overall scaling is the same no matter which of the coordinates one chooses to absorb the scaling
of t. In the case of the holomorphic 3–form, the numerator is 1, so the only scaling comes from
Ω0 which behaves the same as abcde. One can then make the form as a whole invariant under the
monodromy by including an additional factor of t in the numerator. This explains the (sometimes
obscure) appearance of the factor of t in equation (C.15). The monodromy of the periods is then
entirely geometric in origin.

For the non–invariant forms it is unclear how to achieve the same outcome, so we work in terms
of the original variable t, thus ensuring that the monodromy of the Picard–Fuchs equations comes
only from the cycles.

3 Quintic Calabi–Yau 3–Folds along Enhanced Discrete Symme-

try Loci

As shown by the examples in appendix C, the Griffiths–Dwork method involves some algebraic
tedium, particularly at step 2 of the procedure outlined in 2.4. In this section we exploit much
simpler technique, similar to that found in [9] but one in which our derivation, utilizing the results
reviewed in 2, establishes a different interpretation than that suggested in [9]. We then apply it to
two families of Calabi–Yau 3–folds.

14See for example section 2.2 of [18].
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3.1 The Diagram Technique for the Fermat Quintic

We start with formula 4.5 from [16], which in our notation is:

Ω0

Q(t)k+1

n∑

i=0

Ai
∂Q(t)

∂xi
=

1

k

Ω0

Q(t)k

n∑

i=0

∂Ai

∂xi
+ exact forms (3.1)

Recall that Q(t) is the defining equation of the hypersurface, Ai are homogeneous polynomials in

the [xi], and Ω0 =
∑

i(−1)ixidx0 ∧ . . . d̂xi . . . ∧ dxn. We now specialize to the Fermat family of
quintics, i.e. n = 4, and:

Q(t) =
1

5

(
a5 + b5 + c5 + d5 + e5

)
− tabcde (3.2)

where [a, b, c, d, e] = [x0, x1, x2, x3, x4] is an alternative notation for the homogeneous coordinates.
For this case, we have:

∂Q(t)

∂xi
= (xi)4 − tx0 . . . x̂i . . . x4 (3.3)

Next we choose Ai = δijxiA where A = (x0)v0(x1)v1(x2)v2(x3)v3(x4)v4 = av0bv1cv2dv3ev4 . Griffiths’
formula then becomes:

Ω0

Q(t)k+1
A
[
(xi)5 − tx0x1x2x3x4

]
=

1

k

Ω0

Q(t)k
(1 + vi)A+ exact forms (3.4)

In order that these forms are well defined on P4, we must have:

k =
1

5
degA+ 1 =

1

5
(v0 + v1 + v2 + v3 + v4) + 1 (3.5)

so we will write k(v) from now on. Integrating over a cycle in P4 − V gives:

∫
Ω0

Q(t)k(v)+1
A(xi)5 = t

∫
Ω0

Q(t)k(v)+1
Ax0x1x2x3x4 +

(1 + vi)

k(v)

∫
Ω0

Q(t)k(v)
A (3.6)

We can write this relation in the form:

(v0, . . . , vi + 5, . . . , v4) =
(1 + vi)

k(v)
(v0, v1, v2, v3, v4) + t(v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1) (3.7)

which uses the following shorthand for the periods:

(v0, v1, v2, v3, v4) =

∫
Ω0

Q(t)k(v)
(x0)v0(x1)v1(x2)v2(x3)v3(x4)v4 (3.8)

The opportunity to write a differential equation arises because:

d

dt
(v0, v1, v2, v3, v4) =

d

dt

∫
Ω0

Q(t)k(v)
av0bv1cv2dv3ev4

= k(v)

∫
Ω0

Q(t)k(v)+1
av0+1bv1+1cv2+1dv3+1ev4+1 (3.9)

= k(v)(v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)
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To organize these relations in a useful way, the authors of [9] presented (3.7) as a diagram:

(v0, v1, v2, v3, v4) −→ (v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)
↓ Di

(v0, . . . , vi + 5, . . . , v4)
(3.10)

One should read this simply as saying that these three periods are linearly related; the subscript
on Di indicating which linear relation is being used. It’s also useful to keep in mind that the period
on the top right is proportional to the derivative of the period on the top left. One can then build
up larger diagrams, for example:

(0, 0, 0, 0, 0) → (1, 1, 1, 1, 1) → (2, 2, 2, 2, 2) → (3, 3, 3, 3, 3) → (4, 4, 4, 4, 4)
↓ D0 ↓ D0 ↓ D0 ↓ D0

(5, 0, 0, 0, 0) → (6, 1, 1, 1, 1) → (7, 2, 2, 2, 2) → (8, 3, 3, 3, 3)
↓ D1 ↓ D1 ↓ D1

(5, 5, 0, 0, 0) → (6, 6, 1, 1, 1) → (7, 7, 2, 2, 2)
↓ D2 ↓ D2

(5, 5, 5, 0, 0) → (6, 6, 1, 1, 1)
↓ D3

(4, 4, 4, 4,−1) → (5, 5, 5, 5, 0)
↓ D4

(4, 4, 4, 4, 4)

Several comments are in order:

1. The entry (4, 4, 4, 4,−1) does not correspond to a period. As one can see from (3.7), this part
of the diagram just says that (4, 4, 4, 4, 4) is proportional to (5, 5, 5, 5, 0).

2. Only one of the Di is used in each row, and each Di is used once.

3. Working up the diagram using (3.7), one can write (4, 4, 4, 4, 4) at the bottom in terms of the
top row of periods. This is then a 4th order differential equation for the period (0, 0, 0, 0, 0),
i.e. the periods of the holomorphic 3–form.

[
(t5 − 1)

d4

dt4
+ 10t4

d2

dt2
+ 25t3

d2

dt2
+ 15t2

d

dt
+ t

]
(0, 0, 0, 0) = 0 (3.11)

Or, in terms of η = t d
dt :

[
(η + 1)4 − 1

t5
η(η − 1)(η − 2)(η − 3)

]
(0, 0, 0, 0, 0) = 0 (3.12)

One can put this in generalized hypergeometric form with a change of variables: λ = t5,
θ = λ d

dλ :

[
θ

(
θ − 1

5

)(
θ − 2

5

)(
θ − 3

5

)
− λ

(
θ +

1

5

)4
]

(0, 0, 0, 0, 0) = 0 (3.13)

This is the equation satisfied by 4F3

[
1
5 ,

1
5 ,

1
5 ,

1
5

4
5 ,

3
5 ,

2
5

∣∣∣∣ t5
]

4. This procedure is rather more convenient than the Griffiths–Dwork approach. [16, 20]
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The reason that a 4th order equation appears as opposed to order 204 = dimC PH
3(V (t),C) =

b3 can be traced back to the discrete symmetries of V (t) mentioned in the introduction. Recall
that the symmetry group is (S5 ⋉ (Z5)

4)/Z5. For the subgroup of scaling symmetries we can take
the following for generators:

g1 = (1, 0, 0, 0, 4) g2 = (1, 0, 0, 4, 0) g3 = (1, 0, 4, 0, 0) (3.14)

where as before the entries indicate powers of a nontrivial 5th root of unity. Notice that the rule
(3.10) ensures that all periods in a given diagram transform in the same representation of (Z5)

3.
It follows that as one moves around the base of the family (i.e. as t varies), each 3–form only
samples a subspace of H3(X,C) spanned by those 3–forms transforming in the same representation
of (S5 ⋉ (Z5)

4)/Z5.

3.1.1 Interpretation of Equations from the Diagram Technique

Equation (3.7) and its diagramatic representation (3.10) can be found in section 3.1 of [9]. However,
in this paper a different meaning is attached to the components of the diagram: (v0, v1, v2, v3, v4).
In particular the authors of [9] define:

(v0, v1, v2, v3, v4) =
1

2πi

∫

Γ
d5x

(x0)v0(x1)v1(x2)v2(x3)v3(x4)v4

Q(t)k(v)+1
(3.15)

where Γ is a 5–torus in C
5 whose factors are loops winding around the 5 varieties ∂iQ = 0. Equation

3.2 of [9] then claims that this is in fact a period of the holomorphic 3–form:

(v0, v1, v2, v3, v4) =

∫

γ~v

Ω (3.16)

where γ~v is a 3–cycle whose homology class corresponds to the element of the Jacobian ideal repre-
sented by the monomial (x0)v0(x1)v1(x2)v2(x3)v3(x4)v4 . The purpose of the extended introduction
in section 2 (and in particular the statement of Griffith’s theorems) is to show that this interpreta-
tion cannot be correct. It is clear from the definition of the Gauss–Manin connection in equation
(2.26) that all 204 periods of the holomorphic 3–form obey the 4th order equation (3.11). And it
is clear from (2.11) and the derivation above that the equations corresponding to other monomials
are not satisfied by different periods of Ω, but rather by all 204 periods of other, non–holomorphic

forms.15

Periods of the Forms Corresponding to 5th Order Monomials

In general, the quintic monomials map to classes in F
3,2 = H3,0⊕H2,1, but we saw in section 2.4 that

the symmetries can entail further restrictions. We therefore classify the elements of C[a, b, c, d, e]5
by their transformation properties under the (Z5)

3 symmetries of the Fermat quintic. Fortunately
there is no need to look at each of the 126 monomials separately, because they fall into 5 sets which
transform among themselves under permutations of the homogeneous coordinates. See table 2.

As is well known, finding a set of 101 of these 126 that are independent as elements of
C[a, b, c, d, e]5/J(Q) is immediate. From (3.3), we see that a5, b5, c5, d5, e5 and abcde are all equiv-

15There is a trivial sense in which our interpretation of the diagrams is consistent with that of [9]. One can choose
a basis of cycles so that all but four periods of the holomorphic 3–form Ω vanish identically over the entire moduli
space. These 200 vanishing periods of Ω then satisfy the ODEs assigned to them in [9], simply because zero is a
solution of any linear homogeneous differential equation.
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Representation Class Example Monomials Number of Monomials in Class

A a5, b5, c5, d5, e5, abcde 6
B a4b, b2cde 40
C a3b2 20
D a3bc 30
E a2b2c 30

Table 2: The 126 quintic monomials split into 5 sets under the permutation and scaling symmetries.
The number in the right column is the number of example monomials listed supplemented by their
permutations.

alent, and from

b∂aQ(t) = a4b− tb2cde (3.17)

we see that we can get rid of half of the monomials in representation class B. The result is
summarized in table 3. By the argument at the end of section 2.4, if [m5] ∈ C[a,b,c,d,e]5

J(Q) is in

Representation Independent Example Number of Independent
Class Monomials Monomials in Class

A abcde 1
B b2cde 20
C a3b2 20
D a3bc 30
E a2b2c 30

Table 3: After the quotient by the Jacobian ideal J(Q) = [∂iQ(t)], there are 101 independent
monomials.

representations B, C,D or E , then the classes Res
(

m5Ω0
Q2

)
are elements of H2,1 rather than H3,0 ⊕

H2,1. There is no such restriction for the single class in representation A: the derivative of the
holomorphic 3–form with respect to t.

3.1.2 Algorithm for Diagram Construction

In the previous section as well as in [9], the diagram for the holomorphic 3–form was constructed
and utilized in an ad hoc manner. We now present a general algorithm which can be applied
straightforwardly to all the forms on several families of hypersurfaces.

Representation Class A: {abcde}
1. In this case, we are looking for an equation satisfied by (1, 1, 1, 1, 1). First, differentiate with

respect to t as many times as is necessary to create the following ‘staircase diagram’:
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(3, 3, 3, 3, 3) → (4, 4, 4, 4, 4)
↓ D0

(7, 2, 2, 2, 2) → (8, 3, 3, 3, 3)
↓ D1

(6, 6, 1, 1, 1) → (7, 7, 2, 2, 2)
↓ D2

(5, 5, 5, 0, 0) → (6, 6, 6, 1, 1)
↓ D3

(4, 4, 4, 4,−1) → (5, 5, 5, 5, 0)
↓ D4

(4, 4, 4, 4, 4)

(3.18)

As before, one uses each of the Di’s once, so that the bottom left and top right periods match.

2. Next extend the diagram to the left as far as possible by adding extra mini–diagrams:

(1, 1, 1, 1, 1)A → (2, 2, 2, 2, 2) → (3, 3, 3, 3, 3) → (4, 4, 4, 4, 4)
↓ D0 ↓ D0 ↓ D0

(5, 0, 0, 0, 0)B → (6, 1, 1, 1, 1) → (7, 2, 2, 2, 2) → (8, 3, 3, 3, 3)
↓ D1 ↓ D1 ↓ D1

(5, 5, 0, 0, 0)C → (6, 6, 1, 1, 1) → (7, 7, 2, 2, 2)
↓ D2 ↓ D2

(5, 5, 5, 0, 0)D → (6, 6, 6, 1, 1)
↓ D3

(4, 4, 4, 4,−1) → (5, 5, 5, 5, 0)E

↓ D4

(4, 4, 4, 4, 4)

(3.19)

The one exception is that we do not add a piece to the left of the period we are interested in:
(1, 1, 1, 1, 1). The subscripts on the leftmost periods in each row are the symbols we will use
to denote them in equations.

3. We now write the relations corresponding to the leftmost mini–diagrams, i.e. a coupled system
in (A,B,C,D,E):

1

24
η(η − 1)(η − 2)A = t4E, E =

1

4
(η + 1)D, D =

1

3
(η + 1)C (3.20)

C =
1

2
(η + 1)B, ηB = t(η + 2)A (3.21)

where as before η is the logarithmic derivative d
d(log t) = t d

dt .

4. Finally we manipulate the coupled system to find an equation containing A alone.

[
η(η − 1)(η − 2)(η − 4)− t5(η + 2)4

]
A = 0 (3.22)

For this last step relations like ηt = (t+ 1)η are particularly helpful.
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Representation Class B:
{
b2cde

}

(0, 2, 1, 1, 1)A → (1, 3, 2, 2, 2)
↓ D4 ↓ D4

(0, 2, 1, 1, 6)B → (1, 3, 2, 2, 7)
↓ D3

(−1, 1, 0, 5, 5) → (0, 2, 1, 6, 6)C

↓ D0

(3, 0,−1, 4, 4) → (4, 1, 0, 5, 5)D

↓ D2

(2,−1, 3, 3, 3) → (3, 0, 4, 4, 4)E

↓ D1

(2, 4, 3, 3, 3)

The coupled system is:

1

6
η(η − 1)A = t3E, E = tD, D = tC (3.23)

C =
1

3
(η + 2)B, B =

1

2
(η + 2)A (3.24)

The equation for A is:

[
η(η − 1)− t5(η + 2)2

]
A = 0 (3.25)

Representation Class C:
{
a3b2

}

(3, 2, 0, 0, 0)A → (4, 3, 1, 1, 1)
↓ D4 ↓ D4

(3, 2, 0, 0, 5)B → (4, 3, 1, 1, 6)
↓ D3

(2, 1,−1, 4, 4) → (3, 2, 0, 5, 5)C

↓ D2

(0,−1, 2, 2, 2) → (1, 0, 3, 3, 3)D → (2, 1, 4, 4, 4)
↓ D1

(−1, 3, 1, 1, 1) → (0, 4, 2, 2, 2)E

↓ D0

(4, 3, 1, 1, 1)

(3.26)

The coupled system is:

1

2
ηA = t2E, E = tD,

1

3
ηD = t2C (3.27)

C =
1

3
(η + 1)B, B =

1

2
(η + 1)A (3.28)

The equation for A is:

[
η(η − 3)− t5(η + 1)2

]
A = 0 (3.29)
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Representation Class D:
{
a3bc

}

(3, 1, 1, 0, 0)A → (4, 2, 2, 1, 1)
↓ D4 ↓ D4

(2, 0, 0,−1, 4) → (3, 1, 1, 0, 5)B → (4, 2, 2, 1, 6)
↓ D3 ↓ D3

(2, 0, 0, 4, 4)C → (3, 1, 1, 5, 5)
↓ D2

(1,−1, 4, 3, 3) → (2, 0, 5, 4, 4)D

↓ D1

(−1, 2, 2, 1, 1) → (0, 3, 3, 2, 2)E → (1, 4, 4, 3, 3)
↓ D0

(4, 2, 2, 1, 1)

The coupled system is:

1

2
ηA = t2E,

1

3
ηE = t2D, D =

1

3
(η + 1)C (3.30)

C = tB, B =
1

2
(η + 1)A (3.31)

The equation for A is:

[
η(η − 2)− t5(η + 1)(η + 2)

]
A = 0 (3.32)

Representation Class E:
{
a2b2c

}

(2, 2, 1, 0, 0)A → (3, 3, 2, 1, 1)
↓ D4 ↓ D4

(1, 1, 0,−1, 4) → (2, 2, 1, 0, 5)B → (3, 3, 2, 1, 6)
↓ D3 ↓ D3

(0, 0,−1, 3, 3) → (1, 1, 0, 4, 4)C → (2, 2, 1, 5, 5)
↓ D2 ↓ D2

(0, 0, 4, 3, 3)D → (1, 1, 5, 4, 4)
↓ D1

(−1, 4, 3, 2, 2) → (0, 5, 4, 3, 3)E

↓ D0

(4, 4, 3, 2, 2)

The coupled system is:

1

6
η(η − 1)A = t3E, E =

1

3
(η + 1)D, D = tC (3.33)

C = tB, B =
1

2
(η + 1)A (3.34)

The equation for A is:

[
η(η − 1)− t5(η + 3)(η + 1)

]
A = 0 (3.35)
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Summary of Columns of the Period Matrix

Corresponding to 5th Order Monomials

Number of Classes Operator Annihilating Periods Hodge Type

A 1 η(η − 1)(η − 2)(η − 4)− t5(η + 2)4 H3,0 ⊕H2,1

B 20 η(η − 1)− t5(η + 2)2 H2,1

C 20 η(η − 3)− t5(η + 1)2 H2,1

D 30 η(η − 2)− t5(η + 1)(η + 2) H2,1

E 30 η(η − 1)− t5(η + 3)(η + 1) H2,1

Periods of the Forms Corresponding to 10th Order Monomials

It looks like an unpleasant task to sift through the
(14

4

)
= 1001 10th order monomials, classifying

them by their transformations under (Z5)
3, and checking for relations in J(Q). So we take a

different route.
Our aim is to find a convenient basis of C[a, b, c, d, e]10/J(Q). To this end, notice that we can

choose a basis of C[a, b, c, d, e]5/J(Q) not containing any homogeneous coordinate raised to the 4th
or 5th power. If the basis elements are restricted to being monomials, then the basis is unique:

[mi] =
{
[abcde], [b2cde], [a3b2], [a3bc], [a2b2c]

}
+ permutations (3.36)

Here i = 1, . . . , 101. In other words, any element of C[a, b, c, d, e]5/J(Q) can be written:
∑

i αi[mi]
with αi ∈ C. We now define a map denoted ⋆:

⋆ :
C[a, b, c, d, e]5

J(Q)
→ C[a, b, c, d, e]10

J(Q)
(3.37)

such that ⋆ [m] =

[
a3b3c3d3e3

m

]
(3.38)

Note that it is crucial that the basis [mi] contains no elements like [a4b] or [a5] in order that the
map is well defined. We define the action of ⋆ to be linear:

⋆
(
α1[m1] + α2[m2]

)
= α1 ⋆ [m1] + α2 ⋆ [m2] (3.39)

The claim is that if [mi] is the above basis of C[a,b,c,d,e]5
J(Q) , then ⋆[mi] is a basis of C[a,b,c,d,e]10

J(Q) . To
prove it, consider the pairing:

F :
C[a, b, c, d, e]5

J(Q)
× C[a, b, c, d, e]10

J(Q)
→ C[a, b, c, d, e]15

J(Q)
≃ C (3.40)

given by F



(
∑

i

αi[mi]

)
,



∑

j

βj [m̃j]




 =

∑

i,j

αiβj [mim̃j] (3.41)

where [m̃i] is a basis of C[a, b, c, d, e]10/J(Q). The isomorphism with C is realized by taking the
coefficient of [a3b3c3d3e3] in the sum. We’ll denote this coefficient F̂ .
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Now we know that:

dim
C[a, b, c, d, e]5

J(Q)
= dim

C[a, b, c, d, e]10
J(Q)

= 101 (3.42)

So, ⋆[mi] is a basis of basis of C[a, b, c, d, e]10/J(Q) iff the 101×101 matrix F̂
(
[mi], ⋆[mj ]

)
is non-

degenerate. But it’s not hard to see that F̂
(
[mi], ⋆[mj ]

)
= δij , the 101 × 101 identity matrix. So

⋆[mi] is the dual basis to [mi]. We have therefore found the basis we were looking for.
Before constructing diagrams for the periods corresponding to ⋆[mi], it is worth looking at how

the ⋆ operator interacts with the discrete symmetries of the Fermat quintic. First some notation: for
the (Z5)

3 generated by g1, g2 and g3, we say that a monomial [m] is in the (n1, n2, n3) representation
if gi[m] = γni [m] for i = 1, 2, 3 where γ is a nontrivial 5th root of unity. It is easy to see that
if [m] transforms in the representation (n1, n2, n3), then ⋆[m] transforms in the representation
(5− n, 5− n, 5− n).

We can go a step further, and think of ⋆ as acting on the classes of irreps of (Z5)
3 that transform

into each other under permutations. (We labeled these A,B, C,D and E .) One finds a simple action:

⋆A = A, ⋆B = B, ⋆C = C, ⋆D = D, ⋆E = E (3.43)

For example, representation class C includes the monomial a3b2, with (n1, n2, n3) = (3, 3, 3). We
find ⋆[a3b2] = [bc3d3e3], which has (n1, n2, n3) = (2, 2, 2). One can check that this representation
is also in class C. Even better, a permutation of [bc3d3e3] already appears in diagram (3.26) for
representation class C, so there is no need to construct a new diagram. We will see that this happens
for the other representations as well.

Representation Class A
The 5th order monomial was abcde, with period (1, 1, 1, 1, 1) = A. Acting with the ⋆ map gives
(2, 2, 2, 2, 2) = 1

2
dA
dt = Ã. All we need to do is write the relations for A in terms of Ã, to get the

coupled system:

1

12
η(η − 1)Ã = t3E, E =

1

4
(η + 1)D, D =

1

3
(η + 1)C (3.44)

C =
1

2
(η + 1)B,

1

2
η(η − 1)B = t2(η + 3)Ã (3.45)

which leads to the following equation for Ã:

[
η(η − 1)(η − 3)(η − 4)− t5(η + 3)4

]
Ã = 0 (3.46)

Representation Class B
The (2, 1) period was (0, 2, 1, 1, 1) = A. The corresponding (1, 2) period16 is (3, 1, 2, 2, 2) =
(1, 3, 2, 2, 2) = 1

2
dA
dt = Ã. Again we write the relations for A in terms of Ã, to get the coupled

16We refer to the periods of forms corresponding to 10th order monomials as (1, 2)–periods, but one should keep
in mind that generally these are integrals of classes contained in H3,0 ⊕ H2,1 ⊕ H1,2, not just H1,2.
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system:

1

3
ηÃ = t2E, E = tD, D = tC (3.47)

C =
1

3
(η + 2)B, ηB = t(η + 3)Ã (3.48)

which leads to the following equation for Ã:

[
η(η − 4)− t5(η + 3)2

]
Ã = 0 (3.49)

Representation Class C
The (2, 1) period was (3, 2, 0, 0, 0). The corresponding (1, 2) period is (0, 1, 3, 3, 3) = (1, 0, 3, 3, 3)
which appears in the diagram denoted D. We can therefore just use the same coupled system as
before to solve for D:

[
η(η − 2)− t5(η + 4)2

]
D = 0 (3.50)

Representation Class D
The (2, 1) period was (3, 1, 1, 0, 0). The corresponding (1, 2) period is (0, 2, 2, 3, 3) = (0, 3, 3, 2, 2)
which appears in the diagram as E. So as with representation class C, we just use the same coupled
system as found for the (2, 1)–forms to solve for E:

[
η(η − 3)− t5(η + 3)(η + 4)

]
E = 0 (3.51)

Representation Class E
The (2, 1) period was (2, 2, 1, 0, 0) = A. The corresponding (1, 2) period is (1, 1, 2, 3, 3) = (3, 3, 2, 1, 1) =
1
2

dA
dt = Ã. As with representation classes A and B, we write the relations for A in terms of Ã, to

get the coupled system:

1

3
ηÃ = t2E, E =

1

3
(η + 1)D, D = tC (3.52)

C = tB, ηB = t(η + 2)Ã (3.53)

which leads to the following equation for Ã:

[
η(η − 4)− t5(η + 2)(η + 3)

]
Ã = 0 (3.54)
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Summary of Columns of the Period Matrix

Corresponding to 10th Order Monomials

# Classes Operator Annihilating Periods Hodge Type

A 1 η(η − 1)(η − 3)(η − 4)− t5(η + 3)4 H3,0 ⊕H2,1 ⊕H1,2

B 20 η(η − 4)− t5(η + 3)2 H2,1 ⊕H1,2

C 20 η(η − 2)− t5(η + 4)2 H2,1 ⊕H1,2

D 30 η(η − 3)− t5(η + 3)(η + 4) H2,1 ⊕H1,2

E 30 η(η − 4)− t5(η + 2)(η + 3) H2,1 ⊕H1,2

Periods of the Class Corresponding to 15th Order Monomials

The space C[a, b, c, d, e]15/J(Q) is 1 dimensional, and we can take the single nonzero basis vector
to be the monomial a3b3c3d3e3. This choice allows us to reuse the diagram for (1, 1, 1, 1, 1), now

defining A = (3, 3, 3, 3, 3) = d3Ω
dt3 ∈ H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3. The coupled system becomes:

1

4
ηA = t2E, E =

1

4
(η + 1)D, D =

1

3
(η + 1)C (3.55)

C =
1

2
(η + 1)B,

1

6
η(η − 1)(η − 2)B = t3(η + 4)A (3.56)

The resulting equation is:

[
η(η − 2)(η − 3)(η − 4)− t5(η + 4)4

]
A = 0 (3.57)

The algorithm we’ve given for the diagrammatic method is both systematic and powerful. As
our discussion of the Fermat pencil has made clear, the key prerequisite is focusing on a family of
varieties each of whose members respects a large discrete symmetry group. Earlier, we emphasized
that the quintic moduli space has other, less familiar, loci that respect other, less familiar, discrete
symmetries. We now extend the diagrammatic technique to these families, focussing for definiteness
on the Z41 case. The results for the Z51 family are summarized in appendix A.

3.2 The Z41 Quintic: Q(t) = 1
5
(a4b + b4c + c4d + d4e + e4a)− tabcde = 0

The symmetries of this quintic family are the Z41 scalings generated by g = (1, 37, 16, 18, 10)
where the entries now indicate the powers of a nontrivial 41st root of unity multiplying each
homogeneous coordinate. There is also a Z5 group of cyclic permutations of the homogeneous
coordinates generated by α : (a, b, c, d, e) → (b, c, d, e, a), which is intertwined with the scalings by
the relation:

αgα−1 = g10 (3.58)

As for the Fermat family we have:

∫

γi

Ωj(t) =

∫

T (γi)

av0bv1cv2dv3ev4

Q(t)k(v)
Ω0 (3.59)
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But the relation that previously was interpreted diagramatically is now:

Ω0

Q(t)k(v)+1
Axi ∂Q(t)

∂xi
=

1

k

Ω0

Q(t)k(v)
A(1 + vi) + exact forms (3.60)

a
∂Q(t)

∂a
=

4

5
a4b+

1

5
d4a− tabcde (3.61)

with b
∂Q(t)

∂b
=

4

5
b4c+

1

5
a4b− tabcde (3.62)

c
∂Q(t)

∂c
=

4

5
c4d+

1

5
b4c− tabcde (3.63)

d
∂Q(t)

∂d
=

4

5
d4a+

1

5
c4d− tabcde (3.64)

Equations (3.61–3.64) now have three terms on the right hand side, in contrast with their counter-
parts in the (Z5)

3 case, so these relations cannot be used to construct diagrams as before. But one
can rectify the problem by taking particular linear combinations:




256 1 −4 16 −64
−64 256 1 −4 16
16 −64 256 1 −4
−4 16 −64 256 1
1 −4 16 −64 256







a∂aQ(t)
b∂bQ(t)
c∂cQ(t)
d∂dQ(t)
e∂eQ(t)




= 205




a4b− tabcde
b4c− tabcde
c4d− tabcde
d4e− tabcde
e4a− tabcde




(3.65)

Performing the same manipulations on (3.60) and integrating gives:

(v0, . . . , vi + 4, vi+1 + 1, . . . , v4) =
f(i, ~v)

205k(v)
(v0, v1, v2, v3, v4) + t(v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)

(3.66)

where f(i, ~v) is the i’th component of the column vector:




256 1 −4 16 −64
−64 256 1 −4 16
16 −64 256 1 −4
−4 16 −64 256 0
1 −4 16 −64 256







v0 + 1
v1 + 1
v2 + 1
v3 + 1
v4 + 1




(3.67)

and again k(v) = 1 +
∑

i vi. The above is encoded in the following diagrams:

(v0, v1, v2, v3, v4) −→ (v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)
↓ D0

(v0 + 4, v1 + 1, v2, v3, v4)
(3.68)

(v0, v1, v2, v3, v4) −→ (v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)
↓ D1

(v0, v1 + 4, v2 + 1, v3, v4)
(3.69)
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(v0, v1, v2, v3, v4) −→ (v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)
↓ D2

(v0, v1, v2 + 4, v3 + 1, v4)
(3.70)

(v0, v1, v2, v3, v4) −→ (v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)
↓ D3

(v0, v1, v2, v3 + 4, v4 + 1)
(3.71)

(v0, v1, v2, v3, v4) −→ (v0 + 1, v1 + 1, v2 + 1, v3 + 1, v4 + 1)
↓ D4

(v0 + 1, v1, v2, v3, v4 + 4)
(3.72)

The algorithm for finding Picard–Fuchs equations is the same as in the Fermat case except that we
can no longer use diagrams with −1 appearing in any of the entries of (v0, v1, v2, v3, v4).

Periods of the Holomorphic 3–Form

(0, 0, 0, 0, 0)A → (1, 1, 1, 1, 1) → (2, 2, 2, 2, 2) → (3, 3, 3, 3, 3) → (4, 4, 4, 4, 4)
↓ D0 ↓ D0 ↓ D0 ↓ D0

(4, 1, 0, 0, 0)B → (5, 2, 1, 1, 1) → (6, 3, 2, 2, 2) → (7, 4, 3, 3, 3)
↓ D1 ↓ D1 ↓ D1

(4, 5, 1, 0, 0)C → (5, 6, 2, 1, 1) → (6, 7, 3, 2, 2)
↓ D2 ↓ D2

(4, 5, 5, 1, 0)D → (5, 6, 6, 2, 1)
↓ D3

(3, 4, 4, 4, 0)E → (4, 5, 5, 5, 1)
↓ D4

(4, 4, 4, 4, 4)

The coupled system is:

1

6
η(η − 1)(η − 2)(η − 3)A = t4ηE, ηE = t(η + 1)D (3.73)

D =
1

3
(η + 1)C, C =

1

2
(η + 1)B, B = (η + 1)A (3.74)

which leads to the equation:

[
η(η − 1)(η − 2)(η − 3)− t5(η + 1)4

]
A = 0 (3.75)

Notice that the equation for the periods of the holomorphic 3–form is the same as for the Fermat
family. As indicated in the introduction, this fact can be interpreted as a consequence of mirror
symmetry. The Greene–Plesser mirror construction [10][14] involves quotienting the manifold at
t = 0 by the group of scaling symmetries that preserve the holomorphic 3–form, so the differential
forms that descend to the mirror are precisely those that transform trivially. Now recall from figure
1 that the quotient of the Fermat family is a 1–parameter familiy in mirror moduli space, varying
in complex structure with t. The same is true for the quotient of the Z41 family. But the mirror
family of quintics in P4 has h2,1 = 1 and h1,1 = 101, so the complex structure moduli space is one
dimensional. It follows that the quotients of the Fermat and Z41 families are isomorphic in terms of
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their complex structure, differing only in their Kähler structure. We therefore expect the invariant
periods of both loci to obey the same Picard–Fuchs equations.

Periods of the Forms Corresponding to 5th Order Monomials

As before, elements of C[a, b, c, d, e]5/J(Q) correspond to cohomology classes in F
3,2 = H3,0⊕H2,1.

In this case it helps to classify the 126 quintic monomials by their transformation under the Z41

scaling symmetry generated by g = (1, 37, 16, 18, 10). We say a monomial m is in representation n if
g(m) = γnm where γ is a nontrivial 41st root of unity. The monomials are listed by representation
in table 4.

0 1 2 3 4 5 6 7 8 9 10

a4b e3bc b4d e3bd d3c2 a5 d4c b3ad d5 e5 d3ab
b4c b2c2d c3d2 a2c2e c3ab d3b2 e3ac a2d2e b3e2 c3a2 a2b2c
c4d b2d2c a2b2e b3ac c2abd c2e2b e3ad a3be
d4e a2cde d2abc e2bcd
e4a
abcd

11 12 13 14 15 16 17 18 19 20 21

a2c2d a2b2d c3be a4e e4c b3de e4d c3ae c4b a4c b5

d2e2b c2e2a a2d2c b3ce d3a2 d2e2a a3bd a2e2b d3be b3c2 e3c2

b2e2a e2acd a3bc d2bce b2ace c2ade c3bd
c2bde b2ade

22 23 24 25 26 27 28 29 30 31 32

a4d a3e2 c4a e3d2 b4a d4b b2e2c a3ce d3ac b3a2 d4a
e3b2 e3cd b3d2 d3bc c3ad c3e2 c2d2a b2d2a a2c2b a3de e2a2

b3cd c2d2b d3ae b2c2a a2bde e3ab c2e2d b2e2d d2e2c a2bcd
d2ace a2bce b2acd

33 34 35 36 37 38 39 40

c4e a2d2b b4e e4b a3cd a2e2c c5 c3b2

d3e2 b2c2e a3c2 a3b2 c2d2e b2d2e a3d2 b3ac
e2abc c3de b2cde d3ce a2e2d

e2abd c2abe

Table 4: The 126 quintic monomials according to their transformation under Z41.

The decomposition into representations of Z41 must be compatible with the permutation sym-
metry in the sense that cyclic permutation of all the monomials in a given representation should
give the monomials in some other representation. We therefore group the representations by their
behavior under cyclic permutations in table 5. We now need to take account of the quotient of
C[a, b, c, d, e]5 by J(Q) to find out how many forms are associated with each representation class.
The results are summarized in table 6. In total there are 1 + 5(3 + 2 + 2 + 3 + 3 + 3 + 2 + 2) = 101
independent monomials as expected.
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Representation Class Z41 Representations Contained Therein

A 0

B1 5, 8, 9, 21, 39
B2 1, 10, 16, 18, 37
B3 2, 20, 32, 33, 36
B4 4, 23, 25, 31, 40

C1 15, 22, 24, 27, 35
C2 3, 7, 13, 29, 30
C3 6, 14, 17, 19, 26
C4 11, 12, 28, 34, 38

Table 5: The representations of a given row of the right column transform into each other under
cyclic permutations of the homogeneous coordinates.

Representation # Forms per
Class Relations Representation Hodge Type

A a4b ∼ b4c ∼ c4d ∼ d4e ∼ e4a ∼ abcd 1 H3,0 ⊕H2,1

B1 a∂bQ = 4
5b

3ac+ 1
5a

5 − ta2cde 3 H2,1

B2 No relations 2 H2,1

B3 d∂cQ = 4
5c

3d2 + 1
5b

4d− td2abe 2 H2,1

B4 No relations 3 H2,1

C1 c∂aQ = 4
5a

3be+ 1
5e

4c− tc2bde 3 H2,1

C2 No relations 3 H2,1

C3 c∂eQ = 4
5e

3ac+ 1
5d

4c− tc2abd 2 H2,1

C4 No relations 2 H2,1

Table 6: The 25 relations among the 126 quintic monomials, considered as elements of
C[a, b, c, d, e]5/J(Q).

Representation Class A: {abcde}

(1, 1, 1, 1, 1)A → (2, 2, 2, 2, 2) → (3, 3, 3, 3, 3) → (4, 4, 4, 4, 4)
↓ D0 ↓ D0 ↓ D0

(4, 1, 0, 0, 0)B → (5, 2, 1, 1, 1) → (6, 3, 2, 2, 2) → (7, 4, 3, 3, 3)
↓ D1 ↓ D1 ↓ D1

(4, 5, 1, 0, 0)C → (5, 6, 2, 1, 1) → (6, 7, 3, 2, 2)
↓ D2 ↓ D2

(4, 5, 5, 1, 0)D → (5, 6, 6, 2, 1)
↓ D3

(3, 4, 4, 4, 0)E → (4, 5, 5, 5, 1)
↓ D4

(4, 4, 4, 4, 4)
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The coupled system is:

1

6
η(η − 1)(η − 2)A = t3ηE, ηE = t(η + 1)D, D =

1

3
(η + 1)C (3.76)

C =
1

2
(η + 1)B, ηB = t(η + 2)A (3.77)

from which one can find the following equation for the period A:

[
η(η − 1)(η − 2)(η − 4)− t5(η + 2)4

]
A = 0 (3.78)

Representation Class B1: 3 of
{
a5, d3b2, b3ac, a2cde

}

In anticipation of using the ⋆ map to find the (1, 2)–periods, it will be helpful to find a diagram
without a5:

(0, 2, 0, 3, 0)A → (1, 3, 1, 4, 1)
↓ D4 ↓ D4

(1, 2, 0, 3, 4)B → (2, 3, 1, 4, 5)
↓ D2

(0, 1, 3, 3, 3)C → (1, 2, 4, 4, 4)
↓ D0

(2, 0, 1, 1, 1)D → (3, 1, 2, 2, 2) → (4, 2, 3, 3, 3)
↓ D1

(1, 3, 1, 0, 0)E → (2, 4, 2, 1, 1)
↓ D3

(1, 3, 1, 4, 1)

The coupled system is:

ηA = t

(
η +

37

41

)
E, ηE = t

(
η +

18

41

)
D,

1

2
η(η − 1)D = t2

(
η +

10

41

)
C (3.79)

ηC = t

(
η +

16

41

)
B, B =

1

2

(
η +

1

41

)
A (3.80)

which results in the following equations for the 3 independent periods:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

201

41

)(
η +

141

41

)(
η +

51

41

)(
η +

16

41

)(
η +

1

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

133

41

)(
η +

98

41

)(
η +

83

41

)(
η +

78

41

)(
η +

18

41

)]
D = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

182

41

)(
η +

92

41

)(
η +

57

41

)(
η +

42

41

)(
η +

37

41

)]
E = 0

(3.81)
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Representation Class B2:
{
e3bc, b2c2d

}

(0, 1, 1, 0, 3)A → (1, 2, 2, 1, 4)
↓ D3 ↓ D3

(0, 1, 1, 4, 4)B → (1, 2, 2, 5, 5)
↓ D0

(3, 1, 0, 3, 3)C → (4, 2, 1, 4, 4)
↓ D2

(2, 0, 3, 3, 2)D → (3, 1, 4, 4, 3)
↓ D1

(0, 2, 2, 1, 0)E → (1, 3, 3, 2, 1) → (2, 4, 4, 3, 2)
↓ D4

(1, 2, 2, 1, 4)

The coupled system is:

ηA = t

(
η +

33

41

)
E,

1

2
η(η − 1)E = t2

(
η +

20

41

)
D, ηD = t

(
η +

36

41

)
C (3.82)

ηC = t

(
η +

2

41

)
B, B =

1

2

(
η +

32

41

)
A (3.83)

The equations for the 2 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

197

41

)(
η +

102

41

)(
η +

77

41

)(
η +

32

41

)(
η +

2

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

143

41

)(
η +

118

41

)(
η +

73

41

)(
η +

43

41

)(
η +

33

41

)]
E = 0

(3.84)

Representation Class B3: 2 of
{
b4d, c3d2, d2abe

}

(0, 4, 0, 1, 0)A → (1, 5, 1, 2, 1)
↓ D4 ↓ D4

(1, 4, 0, 1, 4)B → (2, 5, 1, 2, 5)
↓ D2

(0, 3, 3, 1, 3)C → (1, 4, 4, 2, 4)
↓ D0

(3, 3, 2, 0, 2)D → (4, 4, 3, 1, 3)
↓ D3

(1, 1, 0, 2, 1)E → (2, 2, 1, 3, 2) → (3, 3, 2, 4, 3)
↓ D1

(1, 5, 1, 2, 1)

The coupled system is:

ηA = t

(
η +

81

41

)
E,

1

2
η(η − 1)E = t2

(
η +

23

41

)
D, ηD = t

(
η +

4

41

)
C (3.85)

ηC = t

(
η − 10

41

)
B, B =

1

2

(
η +

25

41

)
A (3.86)
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The equations for the 2 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

245

41

)(
η +

105

41

)(
η +

45

41

)(
η +

25

41

)(
η − 10

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

146

41

)(
η +

86

41

)(
η +

81

41

)(
η +

66

41

)(
η +

31

41

)]
E = 0

(3.87)

Representation Class B4:
{
d3c2, c3ab, a2b2e

}

(0, 0, 2, 3, 0)A → (1, 1, 3, 4, 1)
↓ D4 ↓ D4

(1, 0, 2, 3, 4)B → (2, 1, 3, 4, 5)
↓ D1

(0, 3, 2, 2, 3)C → (1, 4, 3, 3, 4)
↓ D0

(2, 2, 0, 0, 1)D → (3, 3, 1, 1, 2) → (4, 4, 2, 2, 3)
↓ D2

(1, 1, 3, 0, 0)E → (2, 2, 4, 1, 1)
↓ D3

(1, 1, 3, 4, 1)

The coupled system is:

ηA = t

(
η +

5

41

)
E, ηE = t

(
η +

21

41

)
D,

1

2
η(η − 1)D = t2

(
η +

8

41

)
C (3.88)

ηC = t

(
η +

39

41

)
B, B =

1

2

(
η +

9

41

)
A (3.89)

which results in the following equations for the 3 independent periods:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

169

41

)(
η +

144

41

)(
η +

49

41

)(
η +

39

41

)(
η +

9

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

131

41

)(
η +

121

41

)(
η +

91

41

)(
η +

46

41

)(
η +

21

41

)]
D = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

185

41

)(
η +

90

41

)(
η +

80

41

)(
η +

50

41

)(
η +

5

41

)]
E = 0

(3.90)
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Representation Class C1: 3 of
{
e4c, d3a2, a3bc, c2bde

}

Here it will be convenient to leave out the monomial e4c.

(3, 1, 1, 0, 0)A → (4, 2, 2, 1, 1)
↓ D3 ↓ D3

(2, 0, 0, 3, 0)B → (3, 1, 1, 4, 1) → (4, 2, 2, 5, 2)
↓ D4 ↓ D4

(3, 0, 0, 3, 4)C → (4, 1, 1, 4, 5)
↓ D1

(2, 3, 0, 2, 3)D → (3, 4, 1, 3, 4)
↓ D2

(0, 1, 2, 1, 1)E → (1, 2, 3, 2, 2) → (2, 3, 4, 3, 3)
↓ D0

(4, 2, 2, 1, 1)

The coupled system is:

ηA = t

(
η +

30

41

)
E,

1

2
η(η − 1)E = t2

(
η +

7

41

)
D, ηD = t

(
η +

13

41

)
C (3.91)

C =
1

2

(
η +

3

41

)
B, ηB = t

(
η +

29

41

)
A (3.92)

The equations for the 3 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

194

41

)(
η +

89

41

)(
η +

54

41

)(
η +

44

41

)(
η +

29

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

193

41

)(
η +

153

41

)(
η +

48

41

)(
η +

13

41

)(
η +

3

41

)]
B = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

130

41

)(
η +

95

41

)(
η +

85

41

)(
η +

70

41

)(
η +

30

41

)]
E = 0

(3.93)

Representation Class C2:
{
e3bd, a2c2e, b2d2c

}

(0, 1, 0, 1, 3)A → (1, 2, 1, 2, 4)
↓ D0 ↓ D0

(4, 2, 0, 1, 3)B → (5, 3, 1, 2, 4)
↓ D2

(2, 0, 2, 0, 1)C → (3, 1, 3, 1, 2) → (4, 2, 4, 2, 3)
↓ D1 ↓ D1

(2, 4, 3, 0, 1)D → (3, 5, 4, 1, 2)
↓ D3

(0, 2, 1, 2, 0)E → (1, 3, 2, 3, 1) → (2, 4, 3, 4, 2)
↓ D4

(1, 2, 1, 2, 4)
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The coupled system is:

ηA = t

(
η +

17

41

)
E,

1

2
η(η − 1)E = t2

(
η +

14

41

)
D, D =

1

2

(
η +

19

41

)
C (3.94)

1

2
η(η − 1)C = t2

(
η +

26

41

)
B, B =

1

2

(
η +

6

41

)
A (3.95)

The equations for the 3 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

181

41

)(
η +

101

41

)(
η +

96

41

)(
η +

26

41

)(
η − 6

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

149

41

)(
η +

129

41

)(
η +

99

41

)(
η +

19

41

)(
η +

14

41

)]
C = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

142

41

)(
η +

137

41

)(
η +

67

41

)(
η +

47

41

)(
η +

17

41

)]
E = 0

(3.96)

Representation Class C3: 2 of
{
d4c, e3ac, c2abd

}

(1, 0, 1, 0, 3)A → (2, 1, 2, 1, 4)
↓ D1 ↓ D1

(1, 4, 2, 0, 3)B → (2, 5, 3, 1, 4)
↓ D3

(0, 3, 1, 3, 3)C → (1, 4, 2, 4, 4)
↓ D0

(3, 3, 0, 2, 2)D → (4, 4, 1, 3, 3)
↓ D2

(1, 1, 2, 1, 0)E → (2, 2, 3, 2, 1) → (3, 3, 4, 3, 2)
↓ D4

(2, 1, 2, 1, 4)

The coupled system is:

ηA = t

(
η +

34

41

)
E,

1

2
η(η − 1)E = t2

(
η +

11

41

)
D, ηD = t

(
η +

12

41

)
C (3.97)

ηC = t

(
η +

28

41

)
B, B =

1

2

(
η +

38

41

)
A (3.98)

The equations for the 2 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

198

41

)(
η +

93

41

)(
η +

53

41

)(
η +

38

41

)(
η +

28

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

134

41

)(
η +

94

41

)(
η +

79

41

)(
η +

69

41

)(
η +

34

41

)]
E = 0

(3.99)
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Representation Class C4:
{
a2c2d, d2e2b

}

(2, 0, 2, 1, 0)A → (3, 1, 3, 2, 1)
↓ D1 ↓ D1

(2, 4, 3, 1, 0)B → (3, 5, 4, 2, 1)
↓ D4

(2, 3, 2, 0, 3)C → (3, 4, 3, 1, 4)
↓ D3

(0, 1, 0, 2, 2)D → (1, 2, 1, 3, 3) → (2, 3, 2, 4, 4)
↓ D2 ↓ D2

(0, 1, 4, 3, 2)E → (1, 2, 5, 4, 3)
↓ D0

(4, 2, 4, 3, 2)

The coupled system is:

1

2
η(η − 1)A = t2

(
η +

22

41

)
E, E =

1

2

(
η +

27

41

)
D,

1

2
η(η − 1)D = t2

(
η +

24

41

)
C

(3.100)

ηC = t

(
η +

35

41

)
B, B =

1

2

(
η +

15

41

)
A (3.101)

The equations for the 2 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

150

41

)(
η +

145

41

)(
η +

65

41

)(
η +

35

41

)(
η +

15

41

)]
A = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

147

41

)(
η +

117

41

)(
η +

97

41

)(
η +

27

41

)(
η +

22

41

)]
D = 0

(3.102)

In summary, the classes corresponding to representations in B1, . . . ,B4, C1, . . . , C4 are of pure
Hodge type H2,1, and their periods all obey 5th order generalized hypergeometric equations. The
periods of the single class in representation A (the trivial representation) are of mixed Hodge type,
and obey a 4th order generalized hypergeometric equation — the same as that obeyed by the
corresponding periods in the Fermat family.

Periods of the Forms Corresponding to 10th Order Monomials

As for the Fermat quintic, we would like to use the ⋆map to generate a basis of C[a, b, c, d, e]10/J(Q).
This requires that we find a basis of C[a, b, c, d, e]5/J(Q) with no monomials containing 4th or 5th
powers of any coordinate. One can see by examining the relations in table 6 as well as the monomial
content of the representation classes, that such a basis can be found for the Z41 quintic.

As with the Fermat quintic, ⋆ acts nicely on the representations of the discrete symmetry group.
If [m] is in representation n of Z41, then ⋆[m] is in representation 41 − n. Here though the ⋆ map
acts in a nontrivial way on the representation classes:

⋆A =A, ⋆B1 = B3, ⋆B2 = B4, ⋆B3 = B1, ⋆B4 = B2 (3.103)

⋆ C1 = C3, ⋆C2 = C4, ⋆C3 = C1, ⋆C4 = C2 (3.104)

For example, the 10th order monomials found by acting with ⋆ on the 5th order monomials of B1
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appear in the diagram for B3 up to cyclic permutations.

Representation Class A
The 5th order monomial in class A is abcde, which maps to a2b2c2d2e2 under ⋆. We can therefore
reuse the diagram (3.19), but solve for dA

dt ∝ (2, 2, 2, 2, 2) rather than A = (1, 1, 1, 1, 1). The result
is:

[
η(η − 1)(η − 3)(η − 4)− t5(η + 3)4

]dA
dt

= 0 (3.105)

Representation Class B1

From (3.103) we see that we should look at the 5th order monomials in B3:
{
c3d2, d2abe

}
. Acting

with ⋆ gives
{
a3b3de3, a2b2c3de2

}
, corresponding to periods (3, 3, 0, 1, 3) and (2, 2, 3, 1, 2). These

are cyclic permutations of (and hence equal to) (3, 1, 2, 2, 2) and (0, 1, 3, 3, 3) which appear in the
B1 diagram as C and 1

2
dD
dt respectively. So all we need to do is write the coupled system in terms

of dD
dt rather than D and then solve for C and dD

dt . The coupled system is:

ηA = t

(
η +

37

41

)
E, η(η − 1)E = t2

(
η +

59

41

)
dD

dt
,

1

2
η
dD

dt
= t

(
η +

10

41

)
C (3.106)

ηC = t

(
η +

16

41

)
B, B =

1

2

(
η +

1

41

)
A (3.107)

The equations for the 2 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

174

41

)(
η +

139

41

)(
η +

124

41

)(
η +

119

41

)(
η +

59

41

)]
dD

dt
= 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

180

41

)(
η +

165

41

)(
η +

160

41

)(
η +

100

41

)(
η +

10

41

)]
C = 0

Representation Class B2

The 5th order monomials in B4 are
{
d3c2, c3ab, a2b2e

}
. Acting with ⋆ gives

{
a3b3ce3, a2b2d3e3, abc3d3e2

}
,

corresponding to periods (3, 3, 1, 0, 3), (2, 2, 0, 3, 3) and (1, 1, 3, 3, 2). These are cyclic permutations
of (3, 1, 0, 3, 3), (2, 0, 3, 3, 2) and (1, 3, 3, 2, 1) which appear in the B2 diagram as C, D and 1

2
dE
dt

respectively. We therefore write the coupled system in terms of dE
dt rather than E and then solve

for C, D and dE
dt . The coupled system is:

η(η − 1)A = t2
(
η +

74

41

)
dE

dt
,

1

2
η
dE

dt
= t

(
η +

20

41

)
D, ηD = t

(
η +

36

41

)
C (3.108)

ηC = t

(
η +

2

41

)
B, B =

1

2

(
η +

32

41

)
A (3.109)
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The equations for the 3 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

184

41

)(
η +

159

41

)(
η +

114

41

)(
η +

84

41

)(
η +

74

41

)]
dE

dt
= 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

196

41

)(
η +

166

41

)(
η +

156

41

)(
η +

61

41

)(
η +

36

41

)]
C = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

200

41

)(
η +

155

41

)(
η +

125

41

)(
η +

115

41

)(
η +

20

41

)]
D = 0

Representation Class B3

The independent 5th order monomials in B1 can be chosen to be
{
d3b2, b3ac, a2cde

}
. Acting

with ⋆ gives
{
a3bc3e3, a2c2d3e3, ab3c2d2e2

}
, corresponding to periods (3, 1, 3, 0, 3), (2, 0, 2, 3, 3) and

(1, 3, 2, 2, 2). These are cyclic permutations of (0, 3, 3, 1, 3), (3, 3, 2, 0, 2) and (2, 2, 1, 3, 2) which
appear in the B3 diagram as C, D and 1

2
dE
dt respectively. We therefore write the coupled system

in terms of dE
dt rather than E and then solve for C, D and dE

dt . The coupled system is:

ηA = t

(
η +

81

41

)
dE

dt
,

1

2
η(η − 1)

dE

dt
= t2

(
η +

23

41

)
D, ηD = t

(
η +

4

41

)
C (3.110)

ηC = t

(
η − 10

41

)
B, B =

1

2

(
η +

25

41

)
A (3.111)

The equations for the 2 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

204

41

)(
η +

189

41

)(
η +

154

41

)(
η +

64

41

)(
η +

4

41

)]
C = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

168

41

)(
η +

163

41

)(
η +

148

41

)(
η +

113

41

)(
η +

23

41

)]
D = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

187

41

)(
η +

127

41

)(
η +

122

41

)(
η +

107

41

)(
η +

72

41

)]
dE

dt
= 0

Representation Class B4

The 5th order monomials in B2 are
{
e3bc, b2c2d

}
. Acting with ⋆ gives

{
a3b2c2d3, a3bcd2e3

}
, cor-

responding to periods (3, 2, 2, 3, 0), and (3, 1, 1, 2, 3). These are cyclic permutations of (0, 3, 2, 2, 3)
and (3, 3, 1, 1, 2) which appear in the B4 diagram as C, and 1

2
dD
dt respectively. We write the coupled

system in terms of dD
dt rather than D and then solve for C and dD

dt . The coupled system is:

ηA = t

(
η +

5

41

)
E, η(η − 1)E = t2

(
η +

62

41

)
dD

dt
,

1

2
η
dD

dt
= t

(
η +

8

41

)
C (3.112)

ηC = t

(
η +

39

41

)
B, B =

1

2

(
η +

9

41

)
A (3.113)

which results in the following equations for the 3 independent periods:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

203

41

)(
η +

173

41

)(
η +

128

41

)(
η +

108

41

)(
η +

8

41

)]
C = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

172

41

)(
η +

162

41

)(
η +

132

41

)(
η +

87

41

)(
η +

62

41

)]
dD

dt
= 0
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Representation Class C1
The independent 5th order monomials in C3 can be chosen to be

{
e3ac, c2abd

}
. Acting with ⋆

gives
{
a2b3c2d3, a2b2cd2e3

}
, corresponding to periods (2, 3, 2, 3, 0), and (2, 2, 1, 2, 3). These are

cyclic permutations of (2, 3, 0, 2, 3) and (1, 2, 3, 2, 2) which appear in the C1 diagram as D, and 1
2

dE
dt

respectively. We write the coupled system in terms of dE
dt rather than E and then solve for D and

dE
dt . The coupled system is:

η(η − 1)A = t2
(
η +

71

41

)
dE

dt
,

1

2
η
dE

dt
= t

(
η +

7

41

)
D (3.114)

ηD =t

(
η +

13

41

)
C, C =

1

2

(
η +

3

41

)
B, ηB = t

(
η +

29

41

)
A (3.115)

which results in the following equations for the 2 independent periods:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

177

41

)(
η +

167

41

)(
η +

152

41

)(
η +

112

41

)(
η +

7

41

)]
D = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

171

41

)(
η +

136

41

)(
η +

126

41

)(
η +

111

41

)(
η +

71

41

)]
dE

dt
= 0

Representation Class C2
The 5th order monomials in C4 are

{
a2c2d, d2e2b

}
. Acting with ⋆ gives

{
ab3cd2e3, a3b2c3de

}
, cor-

responding to periods (1, 3, 1, 2, 3), and (3, 2, 3, 1, 1). These are cyclic permutations of (3, 1, 3, 1, 2)
and (1, 3, 2, 3, 1) which appear in the C2 diagram as 1

2
dC
dt , and 1

2
dE
dt respectively. Rewriting the

coupled system in terms of these variables:

η(η − 1)A = t2
(
η +

58

41

)
dE

dt
,

1

2
η
dE

dt
= t

(
η +

14

41

)
D (3.116)

ηD =
1

2
t

(
η +

60

41

)
dC

dt
,

1

2
η
dC

dt
= t

(
η +

26

41

)
B, B =

1

2

(
η +

6

41

)
A (3.117)

which results in the following equations for the periods:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

190

41

)(
η +

170

41

)(
η +

140

41

)(
η +

60

41

)(
η +

55

41

)]
dC

dt
= 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

183

41

)(
η +

178

41

)(
η +

108

41

)(
η +

88

41

)(
η +

58

41

)]
dE

dt
= 0

Representation Class C3
The independent 5th order monomials in C1 can be chosen to be

{
d3a2, a3bc, c2bde

}
. Acting

with ⋆ gives
{
ab3c3e3, b2c2d3e3, a3b2cd2e2

}
, corresponding to periods (1, 3, 3, 0, 3), (0, 2, 2, 3, 3) and

(3, 2, 1, 2, 2). These are cyclic permutations of (0, 3, 1, 3, 3), (3, 3, 0, 2, 2) and (2, 2, 3, 2, 1) which
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appear in the C3 diagram as C, D and 1
2

dE
dt respectively. The coupled system is:

η(η − 1)A = t

(
η +

75

41

)
dE

dt
,

1

2
η
dE

dt
= t

(
η +

11

41

)
D, ηD = t

(
η +

12

41

)
C (3.118)

ηC = t

(
η +

28

41

)
B, B =

1

2

(
η +

38

41

)
A (3.119)

The equations for the 3 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

202

41

)(
η +

192

41

)(
η +

157

41

)(
η +

52

41

)(
η +

12

41

)]
C = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

176

41

)(
η +

161

41

)(
η +

151

41

)(
η +

116

41

)(
η +

11

41

)]
D = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

175

41

)(
η +

135

41

)(
η +

120

41

)(
η +

110

41

)(
η +

75

41

)]
dE

dt
= 0

Representation Class C4
The 5th order monomials in C2 are

{
e3bd, a2c2e, b2d2c

}
. Acting with ⋆ gives

{
a3b2c3d2, ab3cd3e2, a3bc2de3

}
,

corresponding to periods (3, 2, 3, 2, 0), (1, 3, 1, 3, 2) and (3, 1, 2, 1, 3). These are cyclic permutations
of (2, 3, 2, 0, 3), (3, 1, 3, 2, 1) and (1, 2, 1, 3, 3) which appear in the C4 diagram as C, 1

2
dA
dt and 1

2
dD
dt

respectively. The coupled system is:

1

2
η
dA

dt
= t

(
η +

22

41

)
E, ηE =

1

2
t

(
η +

68

41

)
dD

dt
,

1

2
η
dD

dt
= t

(
η +

24

41

)
C (3.120)

ηC = t

(
η +

35

41

)
B, ηB =

1

2
t

(
η +

56

41

)
dA

dt
(3.121)

The equations for the 3 independent periods are:

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

191

41

)(
η +

186

41

)(
η +

106

41

)(
η +

76

41

)(
η +

56

41

)]
dA

dt
= 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

199

41

)(
η +

179

41

)(
η +

109

41

)(
η +

104

41

)(
η +

24

41

)]
C = 0

[
η(η − 1)(η − 2)(η − 3)(η − 4)− t5

(
η +

188

41

)(
η +

158

41

)(
η +

138

41

)(
η +

68

41

)(
η +

63

41

)]
dD

dt
= 0

Periods of the Class Corresponding to 15th Order Monomials

As for the Fermat quintic, we choose the monomial a3b3c3d3e3 to represent the single independent
class in C[a, b, c, d, e]15/J(Q), so we can reuse the diagram for (1, 1, 1, 1, 1) and solve for the period

(3, 3, 3, 3, 3) = 1
6

d2A
dt2 . The resulting equation is:

[
η(η − 2)(η − 3)(η − 4)− t5(η + 4)4

]d2A

dt2
= 0 (3.122)

3.3 Decomposition of the Monodromy Representations

With the Picard–Fuchs data in hand, we now see what we can learn about the corresponding
monodromy representations. Recall from section 2 that the forms we integrate to get periods are
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single–valued as functions of t, i.e. as sections of the Hodge bundle over P1 − F where the set F
consists of 5th roots of unity and ∞. The only source of the monodromy of the solutions to the
Picard–Fuchs equations is therefore the geometric monodromy of the cycles.

However, in general the Picard–Fuchs equations contain less information than the monodromy
of the cycles. For example, the holomorphic 3–form ψ obeys a 4th order equation. This means that
as t varies, ψ moves around in a 4 dimensional space Ψ ⊂ H3(X,C). If [γ] ∈ H3(X,C) is a class
whose dual is in Ψ, then ψ will pick up monodromy [γ] → [γ] + [δ] only if

∫
[δ] ψ 6= 0, i.e. if [δ] has

a component in the dual of Ψ as well. Another way to say this is that the Picard–Fuchs equations
tell us only about particular block diagonal pieces of the monodromy matrices. In particular, we
get:

Fermat:




4× 4
2× 2

2× 2
. . .

2× 2



, Z41 :




4× 4
5× 5

5× 5
. . .

5× 5




(3.123)

In both cases, the single 4× 4 block is the monodromy representation of the equation (3.13). For
the Fermat family, the 2×2 blocks correspond to the 2nd order equations satisfied by the 200 other
forms. There is a block for each of the 100 other representations of (Z5)

3 instantiated by the degree
5 monomials. For the Z41 family, there is a 5× 5 block for each of the 40 representations of Z41.

In general, the non–block diagonal pieces of the monodromy matrices will be nonzero, but the
extra symmetry in the Fermat and Z41 examples provides nongeneric constraints. We now construct
a basis in which the action is purely block–diagonal. Start with the 204 forms, at a point t0 such
that t50 6= 1,∞:

φi = Res

(
Pi

Q(t0)
1
5
degPi+1

Ω0

)
(3.124)

where as before Pi are monomials, Q is the polynomial defining the family of hypersurfaces, and
Ω0 is as in equation (2.12). Let [φ̄i] ∈ H3(V (t0),C) denote the dual classes to the φi, and let φ̄i

be representative cycles of these classes. We choose the Pi to transform in a representation gi of
the symmetry group, so that the classes transform in the representations −gi. One can then use
an Ehresmann connection to generate a family of cycles φ̄i(t) in some neighborhood of t0, such
that for each t, φ̄i(t) transforms in the representation −gi.

17 Since the connection by definition
respects the (Z5)

3 or Z41 symmetry, cycles can only mix under monodromy with cycles in the same
representation of the symmetry group. This is equivalent to the monodromy representation being
block diagonal as above.

4 Yukawa Couplings of (2, 1)–Forms

We stressed in the introduction that the families in table 1 are distinct from the more familiar
Fermat locus (1.3). As a first step to seeing how these differences play out in the more detailed
properties of the loci, we work out the number of Yukawa couplings constrained to vanish by the
discrete symmetry group. This information is also useful for applications to string compactification,

17Note that in general
ˆ
φ̄i(t)

˜
is only dual to φi(t) when t = t0.
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since the Yukawa couplings are intimately related to physically measurable constants in the 4d low
energy effective theory.

Suppose Ω(t) is the holomorphic 3–form on a family of Calabi–Yau 3–folds parameterized by

t. The derivative dΩ(t)
dt is no longer restricted to H3,0(X), but is instead contained in the second

Hodge filtrant: dΩ(t)
dt ∈ H3,0(X)⊕H2,1(X).18 Similarly for the second derivative, we have: d2Ω(t)

dt2 ∈
H3,0(X) ⊕H2,1(X)⊕H1,2(X). The following integrals therefore vanish identically:

∫
Ω(t) ∧ dΩ(t)

dt
=

∫
Ω(t) ∧ d2Ω(t)

dt2
= 0 (4.1)

But including third derivatives gives a nonzero result:

∫
Ω(t) ∧ d3Ω(t)

dt3
6= 0 for general t (4.2)

This is the prototype Yukawa coupling. More generally we can look at the dependence of Ω over
the whole complex structure moduli space (as opposed to just a 1–parameter family). Ω will then
depend on h2,1 parameters ti, and the Yukawa couplings are:

Yijk(ti) =

∫
Ω(ti) ∧

[
d

dt′i

d

dt′j

d

dt′k
Ω(t′i)

]

t′i=ti

(4.3)

Alternatively, with a given normalization for Ω(ti), we can interpret the ti’s as different directions
in TtiM ≃ H2,1(X(ti)), the tangent space to the complex structure moduli space. The Yukawa
couplings are then a map:

H2,1(X(ti))×H2,1(X(ti))×H2,1(X(ti))→ C (4.4)

Yijk is clearly symmetric in its 3 indices, each of which takes h2,1 different values. The number of
independent Yukawa couplings is therefore:

NYukawas =
1

6
h2,1 (h2,1 + 1) (h2,1 + 2) (4.5)

For example, quintic hypersurfaces in P4 have h2,1 = 101, so NYukawas = 176851. The technique
for performing detailed calculations of Yukawa couplings was presented in [4]. Here we find the
number of Yijk’s that are potentially nonzero in the presence of various discrete symmetries.

For symmetries that preserve Ω(t) (i.e. projective linear transformations that act trivially
on abcde), the only Yukawa couplings that are allowed to be finite are those corresponding to
3 monomial deformations of X whose product is invariant. A computer search for such triples
(summarized in table 7) yields numbers that approximately satisfy:

# nonzero Yukawas ≃ Total # of Yukawas

Ord G
(4.6)

A relation of this form is somewhat surprising for the following reason. The transformations of
the 101 monomials do not exhaust the 125 irreducible representations of (Z5)

3, whereas in the Z41

18In the context of abstract variations of Hodge structure, this property is known as Griffiths transversality, and
is a useful necessary condition for the variation of Hodge structure to be geometrical in origin. For hypersurfaces in
projective space, Griffiths transversality follows from the results of section 2.
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Symmetry Group G # Nonzero Yukawas (Total # Yukawas)/(Ord G)

(Z5)
3 1431 1414.8

Z41 4321 4313.4
Z51 3477 3467.7

Z5 × Z13 2736 2720.8
Z3 × Z13 4554 4534.6

(Z5)
2 × Z3 2391 2358.0

(4.7)

Table 7: Numbers of potentially nonvanishing Yukawa couplings for the six families of quintics in
P4 listed at the end of section 3.1.

case there is some monomial transforming in each of the 41 representations. Therefore one might
not expect the numbers of nonzero Yukawa couplings for G = (Z5)

3 to fit the line defined by the
cases with smaller G.

It would be interesting to more fully examine the dependence of the number of (potentially)
nonzero cubic invariants on the size of the manifold’s discrete symmetry group.

5 Conclusion

We have investigated some well–known Calabi–Yau 3–folds but focused on unfamiliar loci in their
complex structure moduli that give rise to unexpected discrete symmetry groups. With the im-
portant role that Calabi–Yau manifolds with enhanced symmetries have played in both the physics
and mathematics literatures, there is strong motivation to study these new families. By carefully
deriving a technique apparently similar to that of [9] but differing significantly in interpretation,
we succeeded in developing a systematic method for computing the Picard–Fuchs equations sat-
isfied by each entry in the full period matrix of along these loci. To illustrate the method, we
applied it to the Fermat family (1.3) as well as the Z41 quintic hypersurface family (the Z51 family
and a weighted projective space example are handled the appendix). We then saw how discrete
symmetries are reflected in the detailed structure of the geometric monodromy representations.
In particular, aside from the 4×4 invariant part the monodromy matrices decompose into block
diagonal pieces of different sizes in the different families. Finally we found the number of Yukawa
couplings constrained to vanish by the symmetries and noted an intriguing approximate relation
between the number of nonzero couplings and the size of the symmetry group.

The Z41 and Z51 families and their cousins in table 1 are thus a new testing ground for many cal-
culations. For example, as with the Fermat family, computations of periods and Yukawa couplings
are more tractable than for a general hypersurface. Such calculations are of interest because in
heterotic string compactifications, the Yukawa couplings are eventually nothing but the parameters
of the standard model, as well as because of the role periods play in various moduli stabilization
schemes. For instance, in any model that purports phenomenological realism, the Yukawas must
be able to incorporate the range of observed particle masses, spanning at least 14 orders of magni-
tude.19 It would be interesting to know if the moduli space of quintics in P4 (which is only a toy
example in this context) admits regions with a large enough range of Yukawa couplings, and if so
how many flux–stabilized vacua they contain. This could potentially amount to a very severe phe-
nomenological restriction on the ‘landscape’ of vacua which currently plagues attempts to extract

19Neutrinos are now known to have a mass approximately 10−3eV, whereas the Z boson has a mass of 9.1×1010eV.
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TeV scale predictions from string theory.
A mathematical direction for future work is to use the non–Fermat families to test some of the

claims of mirror symmetry. In particular Morrison has constructed [23, 18] a variation of Hodge
structure on the even dimensional cohomology of the mirror (the so–called A–model variation)
in analogy with that coming from the middle–dimensional cohomology of the original manifold
(the B–model variation). Corresponding to the B–model monodromy action on H3(X,C), there
are conjectured automorphisms of the topological K–theory of the mirror.20[24] Making this cor-
respondence explicit for the special families considered here should provide new insights into the
mathematical structure (quantum cohomology and Gromov–Witten theory) of the A–model on
Calabi–Yau threefold hypersurfaces in toric orbifolds[26].

Our derivation of the corrected version of the technique outlined by Candelas, de la Ossa and
Rodriguez–Villegas greatly reduces the computation required to find the Picard–Fuchs equations for
a variety of families of Calabi–Yau manifolds with discrete symmetries. The method summarized
in section (3) readily extends to the other examples of 3–folds with discrete symmetries, as well as
symmetric Calabi–Yau hypersurfaces of other dimensions.21

In [27] we examine 1–parameter families of K3 surfaces. Though the Picard–Fuchs equations
can be derived in the same way, the interpretation of the results is more complicated than for
3–folds. The reason is essentially that Hn−1,1 which controls the deformations of complex structure
coincides with H1,1 which contains the Kähler form, as well as information about algebraic cycles.
For example, there is an important sublattice of H1,1 ∩ H2(V (t),Z) known as the Picard group,
whose classes consist of algebraic cycles. The rank of this group (the Picard rank) can jump discon-
tinuously as one deforms the hypersurface, even without passing through singular configurations.
Moreover, it has been shown that loci endowed with discrete symmetries are some of the places
where such jumps take place.[28] K3 surfaces also display some extraordinary phenomena that are
apparently unrelated to enhancements of Picard rank. An example is the theorem of Oguiso [29],
that nontrivial projective families (such as quartic hypersurfaces in P3) contain dense subsets where
the automorphism group is of infinite order. Nothing analogous to this occurs in families of 3–folds.
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helpful conversations during the course of this work. BG and SJ gratefully acknowledge the support
of DOE grant DE-FG02-92ER40699. SJ acknowledges support from Columbia University ISE and
the Pfister Foundation. C.F.D. is supported in part by a Royalty Research Fund Scholar Award
from the Office of Research, University of Washington.

A Picard–Fuchs Equations for the Z51 Quintic

The calculation of the Picard–Fuchs equations for the Z51 quintic:

Q(t) =
1

5

(
a4b+ b4c+ c4d+ d4a+ e5

)
− tabcde = 0 (A.1)

20One often imagines mirror symmetry exchanging middle cohomology H3 with even cohomology Heven = H0 ⊕

H2 ⊕ H4 ⊕ H6. But the Chern map, which sends an element (E, F ) ∈ K0 to c(E)/c(F ) (the quotient of the total
Chern classes) is in fact an isomorphism when (as for quintics in P4) Heven(Z) contains no torsion classes.

21One might hope to generalize the technique further to hypersurfaces and complete intersections in toric varieties,
perhaps with a view to bridge the gap between GKZ systems (which can be derived algorithmically) and true Picard–
Fuchs differential equations.[25]
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differs only in detail from that of the Z41 case. The final results are as follows. The 51 representa-
tions of Z51 group into 14 permutation classes as follows:

Rep. Class Reps. #(2,1)–Forms Rep. Class Reps. #(2,1)–Forms

A 0 1 H 7, 10, 11, 23 1
B 1, 16, 38, 47 1 I 8, 19, 26, 49 2
C 2, 25, 32, 43 2 J 9, 15, 36, 42 2
D 3, 12, 39, 48 2 K 14, 20, 22, 46 2
E 4, 13, 35, 50 3 L 17, 34 2
F 5, 29, 31, 37 2 M 18, 21, 30, 33 2
G 6, 24, 27, 45 2 N 28, 40, 41, 44 3

The operators annihilating the periods of the (2,1)–forms are then:

A: η(η − 1)(η − 2)(η − 4)− t5(η + 2)4

B: η(η − 1)(η − 2)(η − 3)− t5
(
η + 86

51

) (
η + 101

51

) (
η + 106

51

) (
η + 166

51

)

C: η(η − 1)(η − 2)(η − 3)− t5
(
η + 26

51

) (
η + 121

51

) (
η + 151

51

) (
η + 161

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 19

51

) (
η + 49

51

) (
η + 59

51

) (
η + 179

51

)

D: η(η − 1)(η − 2)(η − 3)− t5
(
η + 39

51

) (
η + 54

51

) (
η + 99

51

) (
η + 114

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 3

51

) (
η + 48

51

) (
η + 63

51

) (
η + 243

51

)

E : η(η − 1)(η − 2)(η − 3)− t5
(
η + 1

51

) (
η + 16

51

) (
η + 191

51

) (
η + 251

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 38

51

) (
η + 98

51

) (
η + 103

51

) (
η + 118

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 47

51

) (
η + 52

51

) (
η + 67

51

) (
η + 242

51

)

F : η(η − 1)(η − 2)(η − 3)− t5
(
η + 46

51

) (
η + 71

51

) (
η + 116

51

) (
η + 226

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 22

51

) (
η + 97

51

) (
η + 122

51

) (
η + 167

51

)

G: η(η − 1)(η − 2)(η − 3)− t5
(
η + 6

51

) (
η + 96

51

) (
η + 126

51

) (
η + 231

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 27

51

) (
η + 57

51

) (
η + 147

51

) (
η + 177

51

)

H: η(η − 1)(η − 2)(η − 3)− t5
(
η + 41

51

) (
η + 91

51

) (
η + 146

51

) (
η + 181

51

)

I: η(η − 1)(η − 2)(η − 3)− t5
(
η + 2

51

) (
η + 32

51

) (
η + 127

51

) (
η + 247

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 43

51

) (
η + 53

51

) (
η + 83

51

) (
η + 178

51

)

J : η(η − 1)(η − 2)(η − 3)− t5
(
η + 42

51

) (
η + 87

51

) (
η + 117

51

) (
η + 162

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 36

51

) (
η + 66

51

) (
η + 111

51

) (
η + 246

51

)

K: η(η − 1)(η − 2)(η − 3)− t5
(
η + 37

51

) (
η + 82

51

) (
η + 107

51

) (
η + 182

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 31

51

) (
η + 56

51

) (
η + 131

51

) (
η + 241

51

)

L: η(η − 1)(η − 2)(η − 3)− t5
(
η + 17

51

)2 (
η + 187

51

)2

η(η − 1)(η − 2)(η − 3)− t5
(
η + 34

51

)2 (
η + 119

51

)2

M: η(η − 1)(η − 2)(η − 3)− t5
(
η + 21

51

) (
η + 81

51

) (
η + 171

51

) (
η + 186

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 18

51

) (
η + 33

51

) (
η + 123

51

) (
η + 183

51

)

N : η(η − 1)(η − 2)(η − 3)− t5
(
η + 11

51

) (
η + 61

51

) (
η + 176

51

) (
η + 211

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 23

51

) (
η + 58

51

) (
η + 113

51

) (
η + 163

51

)

η(η − 1)(η − 2)(η − 3)− t5
(
η + 7

51

) (
η + 62

51

) (
η + 112

51

) (
η + 227

51

)
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B Symmetric Hypersurfaces in Weighted Projective Space

It is known that any Calabi–Yau 3–fold can be embedded in Pn for some sufficiently large n, but the
case where the embedding is a hypersurface is the exception rather than the rule. More often the
embedding can only be realized as an intersection of a large number of hypersurfaces. It is therefore
useful to consider other constructions of Calabi–Yau 3–folds. One of the simplest generalizations
of a hypersurface in Pn is a hypersurface in a weighted projective space: (Cn − {0}) / ∼ where the
equivalence relation ∼ is given by:

[x0, . . . , xn] ∼ [λk0x0, . . . , λ
kn ] (B.1)

Here λ is any nonzero complex number, and {k0, . . . , kn} are a collection of integers called the
weights. This space is denoted WP[k0,...,kn], and one easily sees that ordinary projective space is a
special case: Pn = WP[1,...,1]. The formulas relating to hypersurfaces in Pn generalize straightfor-
wardly to the case of nontrivial weights [30]. As before we have:

Ω0

Q(t)k+1

n∑

i=0

Ai
∂Q(t)

∂xi
=

1

k

Ω0

Q(t)k

n∑

i=0

∂Ai

∂xi
+ exact forms (3.1)

But the n–form Ω0 is now given by:

Ω0 =
∑

i

(−1)ikix
idx0 ∧ . . . d̂xi . . . ∧ dxn (B.2)

As an example, consider the collection of weights [k0, k1, k2, k3, k4] = [41, 51, 52, 48, 64]. The condi-
tion for a hypersurface to have zero first Chern class is: degQ =

∑
i ki = 256, so the Fermat–like

Calabi–Yau hypersurface is:

Q(t) =
1

5

(
a5b+ b4c+ c4d+ d4e+ e4

)
− tabcde = 0 (B.3)

One can check that this hypersurface has h2,1 = 1, and so the only periods to consider are those of
the holomorphic 3–form and its derivatives.

As in ordinary projective space, one can find linear combinations of derivatives of Q suitable
for constructing diagrams involving 3 periods:




256 0 0 0 0
−64 320 0 0 0
16 −80 320 0 0
−4 20 −80 320 0
1 −5 20 −80 320







a∂aQ(t)
b∂bQ(t)
c∂cQ(t)
d∂dQ(t)
e∂eQ(t)




= 256




a5b− tabcde
b4c− tabcde
c4d− tabcde
d4e− tabcde
e4 − tabcde




(B.4)
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and the relations corresponding to diagrams are therefore:

(v0 + 5, v1 + 1, v2, v3, v4) =
f(0, ~v)

256k(v)
(~v) + t(~v +~1) (B.5)

(v0, v1 + 4, v2 + 1, v3, v4) =
f(1, ~v)

256k(v)
(~v) + t(~v +~1) (B.6)

(v0, v1, v2 + 4, v3 + 1, v4) =
f(2, ~v)

256k(v)
(~v) + t(~v +~1) (B.7)

(v0, v1, v2, v3 + 4, v4 + 1) =
f(3, ~v)

256k(v)
(~v) + t(~v +~1) (B.8)

(v0, v1, v2, v3, v4 + 4) =
f(4, ~v)

256k(v)
(~v) + t(~v +~1) (B.9)

with the coeficients f(i, ~v) given by:




f(0, ~v)
f(1, ~v)
f(2, ~v)
f(3, ~v)
f(4, ~v)




=




256 0 0 0 0
−64 320 0 0 0
16 −80 320 0 0
−4 20 −80 320 0
1 −5 20 −80 320







v0 + 1
v1 + 1
v2 + 1
v3 + 1
v4 + 1




(B.10)

The diagram for the periods of the holomorphic 3–form is then:

(0, 0, 0, 0, 0)A → (1, 1, 1, 1, 1) → (2, 2, 2, 2, 2) → (3, 3, 3, 3, 3) → (4, 4, 4, 4, 4)
↓ D4 ↓ D4 ↓ D4 ↓ D4

(0, 0, 0, 0, 4)B → (1, 1, 1, 1, 5) → (2, 2, 2, 2, 6) → (3, 3, 3, 3, 7)
↓ D3 ↓ D3 ↓ D3

(0, 0, 0, 4, 5)C → (1, 1, 1, 5, 6) → (2, 2, 2, 6, 7)
↓ D2 ↓ D2

(0, 0, 4, 5, 5)D → (1, 1, 5, 6, 6)
↓ D1

(−1, 3, 4, 4, 4) → (0, 4, 5, 5, 5)E

↓ D0

(4, 4, 4, 4, 4)

The encoded coupled system is:

1

4!
η(η − 1)(η − 2)(η − 3)A = t5E, E =

1

4
(η + 1)D (B.11)

D =
1

3
(η + 1)C, C =

1

2
(η + 1)B, B = (η + 1)A (B.12)

which results in the following Picard–Fuchs equation:

[
η(η − 1)(η − 2)(η − 3)− t5(η + 1)4

]
A = 0 (B.13)

C Examples of the Griffiths–Dwork Technique

As examples of the formalism outlined in section 2 we compute some of the Picard–Fuchs equations
for a family of elliptic curves and the Fermat family of quintics in P4.
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Hesse form Cubics in P2

Cubic hypersurfaces in P2 are elliptic curves, and hence admit a single holomorphic 1–form. We
have the following correspondence in general:22

Ω ∈ H1,0 = F
1,1 → [1] ∈ C[a, b, c]0/[∂iQ] → P1 =

∫
1
QΩ0

dΩ
dt ∈ H1,0 ⊕H0,1 = F

1,0 → [abc] ∈ C[a, b, c]3/[∂iQ] → P2 =
∫

abc
Q Ω0

Here [a, b, c] are homogeneous coordinates, P is generic notation for a column of the period matrix,
and the polynomial Q(t) defining the hypersurface is:

Q(t) =
1

3

(
a3 + b3 + c3

)
− tabc = 0 (C.1)

Holomorphic 1–Form

Differentiating a period of the holomorphic 1–form twice gives: P ′′
1 =

∫
2Ω0
Q3 (abc)2, where P1 is a

period, and the prime denotes differentiation with respect to t. As an element of the Jacobian
ideal, we find:

(1− t3)(abc)2 = t2a2bc
∂Q

∂a
+ ta3b

∂Q

∂b
+ a2b2

∂Q

∂c
(C.2)

Applying (2.32) results in:

(1− t3)d
2P1

dt2
= 2

∫
Ω0

Q2
t2abc+

∫
Ω0

Q2
ta3 (C.3)

Now writing a3 = tabc+ a∂Q
∂a , we find:

∫
Ω0

Q2
ta3 =

∫
Ω0

Q2
t2abc+ t

∫
Ω0

Q2
a
∂Q

∂a
= t2

dP1

dt
+ tP1 (C.4)

Substituting back into (C.3) gives the Picard–Fuchs equation:

(t3 − 1)
d2P1

dt2
+ 3t2

dP1

dt
+ tP1 = 0 (C.5)

In terms of the logarithmic derivative: η = t d
dt , this becomes:

[
(η + 1)2 − 1

t3
η(η − 1)

]
P1 = 0 (C.6)

Making the substitution x = t−3 and θ = x d
dx results in an equation in standard hypergeometric

form:
[
θ2 − x

(
θ +

1

3

)(
θ +

2

3

)]
tP1 = 0 (C.7)

Since nothing in the reasoning above depends on the choice of cycle integrated over, we conclude
that both of the b1 = 2 integrals of the holomorphic 1–form (one column of the period matrix

22For the rest of this section we will abbreviate Hp,q(V (t)) and F
p,q(V (t)) with Hp,q and F

p,q.
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∫
γi

Ωj
X) obey the equation (C.7).

Mixed 1–Form

The Griffiths–Dwork technique doesn’t work so well for the periods of the derivative of the holo-
morphic 1–form:

P2 =

∫
abc

Q(t)2
Ω0 =

d

dt

∫
Ω0

Q(t)
(C.8)

The problem is that we only have to differentiate once in order that the numerator of the integrand
is in the ideal [∂iQ(t)], so one might guess that the P2 obeys a 1st order equation. Indeed a 1st
order equation can be derived, but it contains P1 as well, so it is not a Picard–Fuchs equation. To
eliminate P1 one must differentiate P2 a second time. In the method introduced in section 3.1, this
happens automatically. The end result is:

(t3 − 1)
d2P2

dt2
+

(
5t2 +

1

t

)
dP2

dt
+ 4tP2 = 0 (C.9)

Or, with x = t3 and θ = x d
dx , in hypergeometric form:

[
θ

(
θ − 2

3

)
− x

(
θ +

2

3

)2
]
P2 = 0 (C.10)

Again, since nothing depends on the cycle integrated over, both periods obey the above equation.
The Hesse form cubic is the simplest possible example; in general computational techniques are
required to do the algebra.

Fermat form Quintics in P4

Smooth quintic hypersurfaces in P4 are Calabi–Yau 3–folds with b3 = 204. The results of section 2
give the following correspondence:

Ω ∈ H3,0 → [1] ∈ C[a,b,c,d,e]0
[∂iQ] → P1 =

∫
1
QΩ0

ωα ∈ H3,0 ⊕H2,1 → [Mα] ∈ C[a,b,c,d,e]5
[∂iQ] → Pα =

∫
Mα

Q Ω0

ω′
ζ ∈ H3,0 ⊕H2,1 ⊕H1,2 → [Mζ ] ∈ C[a,b,c,d,e]10

[∂iQ] → Pζ =
∫ Mζ

Q Ω0

d3Ω
dt3
∈ H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 → [a3b3c3d3e3] ∈ C[a,b,c,d,e]15

[∂iQ] → P204 =
∫

a3b3c3d3e3

Q Ω0

Again [a, b, c, d, e] are homogeneous coordinates, and Q(t) is the polynomial defining the hyper-
surface. The indices α and ζ have the ranges {2, . . . , 102} and {103, . . . , 203} respectively. If we
now specialize to the Fermat family of quintic hypersurfaces:

Q(t) =
1

5

(
a5 + b5 + c5 + d5 + e5

)
− tabcde (C.11)

then there are two simplifications. For a general quintic, each period satisfies a 204th order dif-
ferential equation. In computational terms, one expects to have to differentiate periods 204 times
before the numerator in the integrand lies in the Jacobian ideal J(Q). For (C.11) the order of the
equations is reduced to 4 or less. The other simplification is that we can say more about the Hodge
type of the forms than merely which Hodge filtrant they are in.
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Periods of the Holomorphic 3–form

One finds (by Gröbner basis techniques for example) that it is sufficient to differentiate the periods
of the holomorphic 3–form just 4 times.

d4P1

dt4
=

∫
(4!)Ω0

Q5
(abcde)4 (C.12)

(1− t5)(abcde)4 =
[
t4a4(bcde)3

]
∂aQ+

[
t3a7b3(cde)2

]
∂bQ+

[
t2(ab)6c2de

]
∂cQ

+
[
t(abc)5d

]
∂dQ+

[
(abcd)4

]
∂eQ (C.13)

Then proceeding in the same way as with the Hesse cubic, one finds the equation:

(t5 − 1)
d4P1

dt4
+ 10t4

d3P1

dt3
+ 25t3

d2P1

dt2
+ 15t2

dP1

dt
+ tP1 = 0 (C.14)

Substituting x = t−5 and θ = x d
dx gives an equation in generalized hypergeometric form:

[
θ4 − x

(
θ +

1

5

)(
θ +

2

5

)(
θ +

3

5

)(
θ +

4

5

)]
tP1 = 0 (C.15)

Indeed this is how the Picard–Fuchs equation for the invariant periods is most often presented.
From hereon though we will not make such changes of variables, but rather work directly in terms
of the variable t, and the logarithmic derivative η = d

dt . The reasons for this choice are summarized
at the end of section 2.4.

As before, nothing depends on which cycle is integrated over, so all 204 integrals of Ω0
X obey

the 4th order equation (C.14). This fact is related to the symmetries of the Fermat locus in section
3.1.

Periods of the Other Forms

In a similar way, one can pick a basis of the rest of C[a, b, c, d, e]/J(Q) and work out the equations
satisfied by each of the 203 other forms. It is easier to do this with the techniques introduced in
section 3.1. In particular we take advantage of the symmetries of the Fermat–form quintic with
greater ease.

D Geometric Mondromy

In section 2 we explored the connections between two descriptions of hypersurfaces; on the one
hand as objects embedded in projective space (via the order of pole filtration), and on the other
as complex manifolds (via the Hodge filtration). As already alluded to, a great deal of information
about the relation between these two points of view is contained in the period matrix:

Hn−1

(
V (t),Z

)
×Hn−1

(
V (t), C

)
−→ C (D.1)

[γi(t)], [Ωj(t)] −→ Πij(t) =

∫

γi(t)
Ωj(t) (D.2)

The t dependence in [γi(t)] is locally trivial, but if one follows the homology classes [γi(t)] around
a path enclosing a singular hypersurface, one finds that the class at the finish is not the same as at
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the beginning.
Though the reader may be familiar with monodromy of in general, for the purpose of interpreting

Picard–Fuchs equations, it is useful to have in mind a simple example of geometric monodromy
acting on the homology groups of a manifold. As is often the case, elliptic curves provide a
beautifully concrete case study.23 Consider for example the Riemann surface of the function:24

y2 = x(x− 1)(x− t) (D.3)

which is singular at t = 0, 1 and ∞. There are 2 sheets, and we choose the branch cuts to be as in
figure 2. As defined pictorially, the intersection matrix is given by:

Figure 2: The two sheets of the Riemann surface of y2 = x(x − 1)(x − t), which
topologically glue together to make a torus. The A and B cycles are also shown.

(
A ∩A A ∩B
B ∩A B ∩B

)
=

(
0 −1
1 0

)
(D.4)

But now imagine that t executes a small circle around 0. The consequences for the cycles A and B
are shown in figure 3. In particular, the bottom diagram shows both the old B cycle (in red) and
the new B′ (in blue). One can then read off the intersections:

A′ ∩A = 0, A′ ∩B = −1 (D.5)

B′ ∩A = 1, B′ ∩B = 2 (D.6)

From this it follows that the homology classes of the primed cycles are related to those of the
unprimed cycles in the following way:

(
[A′]
[B′]

)
=

(
1 0
−2 1

)(
[A]
[B]

)
(D.7)

In general, it is easy to see that moving cycles around 0, 1,∞ gives a map:

π1

(
P1 − {0, 1,∞}

)
→ Sp(2,Z) (D.8)

23The following argument and diagrams are adapted from [21].
24This set of curves parametrized by t is called the Legendre family.
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Figure 3: The A and B cycles (in green and blue respectively) after t rotates by
π/2, π and 2π. The dashed lines are on the 2nd sheet.

called the monodromy representation, or the monodromy action. The image is Sp(2,Z) rather
than a more general matrix because the intersection form (D.4) must be preserved. An important
consequence of nontrivial monodromy is that the period matrix is a multivalued function of t.
To distinguish the monodromy of cycles from the monodromy of anything else (hypergeometric
functions say), we call the former geometric monodromy.

The families of Calabi–Yau 3–folds we consider in section 3 have a somewhat different singularity
structure from the elliptic curves (D.3). They have the singularities of the Fermat form quintic
(C.11).25 Rather than at t = 0, 1,∞, the singular hypersurfaces are at t5 = 1 and t =∞.
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