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Abstract: We investigate flux vacua on a variety of one-parameter Calabi-Yau compact-

ifications, and find many examples that are connected through continuous monodromy

transformations. For these, we undertake a detailed analysis of the tunneling dynamics

and find that tunneling trajectories typically graze the conifold point—particular 3-cycles

are forced to contract during such vacuum transitions. Physically, these transitions arise

from the competing effects of minimizing the energy for brane nucleation (facilitating a

change in flux), versus the energy cost associated with dynamical changes in the periods

of certain Calabi-Yau 3-cycles. We find that tunneling only occurs when warping due to

back-reaction from the flux through the shrinking cycle is properly taken into account.
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1. Introduction

For some time, the landscape of vacua has been a dominant theme in string theory re-

search. Yet, explicit and detailed investigations of this multidimensional terrain remain

mathematically challenging. Even so, broad-brush outlines of a landscape-based cosmo-

logical scenario have been put forward [1–3]. By melding eternal inflation with the string

landscape, a multiverse consisting of bubble universes is generated, each bubble realizing

one or another of the locally-stable minima in the string landscape. Going beyond this

broad-brush picture requires analytic control of many details, including the topography of

the string landscape (the location and nature of the locally-stable minima) and the pro-

cess of bubble nucleation (Coleman-DeLuccia tunneling in the string landscape). With our

current level of understanding, and with the mathematical tools we’ve so far developed,

gaining such control over the entire landscape is well beyond reach. An alternative strat-

egy, then, is to glean insights from a thorough study of portions of the landscape that

are sufficiently restricted to be mathematically tractable while sufficiently representative

to reveal general physical properties. In this paper, we take a modest step in this direction

through the study of flux compactifications on explicit Calabi-Yau manifolds.

Specifically, we focus on flux compactifications of type IIB string theory which, as is

well known, generate flux potentials that exhibit a huge landscape of lower-dimensional

vacua [2]. In the context of eternal inflation, we make the standard assumption that tun-

neling transitions are the dominant processes that nucleate bubbles of different vacua, but

recognize that it is essential to understand the details of their dynamics. The study of such

cosmological tunneling process predates the string theory landscape, of course. In recent

years, though, researchers have realized that string theory leads to novel effects in this

context [4–6]. Most manifest is the fact that, typically, string compactifications introduce
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hundreds of degrees of freedom: the moduli that describe the fluctuating geometry of the

manifold on which the theory is compactified. Based on recent studies [7–9], extra degrees

of freedom are expected to play an important role in explicit models of vacuum.

An important early work focusing on the “topography” of the Calabi-Yau string land-

scape [10] established that vacua corresponding to different flux configurations can be

smoothly connected via a multi-sheet potential. This work focused primarily on the vac-

uum structure of the mirror quintic compactification [11], and was developed further by [12]

in which the authors estimated tunneling rates between mirror quintic vacua endowed with

different fluxes. These works provide an important backdrop to the current paper. The

mirror quintic is but one of a number of one-parameter Calabi-Yau compactifications, so

a natural question—taken up in the first sections of this paper—is the degree to which

the observations of [10] extend to the full class of such mathematically tractable examples.

We will find that, for the most part, they do. Next, the tunneling trajectories in [12] were

estimated based on qualitative features evident in the relevant flux potentials, so a natural

question—taken up on the later sections of the paper—is the degree to which these esti-

mates are borne out by explicit calculation. We will find that they aren’t; the estimated

tunneling paths [12] turn out not to capture the key dynamical features of stringy tunneling

transitions.

In this paper, we carefully address both of these issues numerically and analytically.

We find that tunneling solutions exhibit a form that we call “conifunneling”: they are

driven into the vicinity of the conifold point, and the geometry of the Calabi-Yau becomes

almost singular and strongly warped. Similar to existing examples of multi-field tunneling,

the additional fields play a crucial role and can take extreme values during transitions. This

provides a detailed new picture of string landscape tunneling, as the extreme situations are

often under better analytical control. For example, we are able give an analytical upper

bound on how distant vacua can be and still be connected by a conifunneling transition.

This paper is structured as follows. In section 2 we describe flux compactifications for

one-parameter Calabi-Yau manifolds. These manifolds have been classified and form a set

of fourteen models, which are organized in four distinct families. In section 3 we apply the

techniques of [10, 12] to a cross-section of these 14 models to investigate similarities and

differences in the vacuum structure of their flux potentials. We tabulate some of the non-

supersymmetric and supersymmetric vacua found in these models, while also developing a

new procedure to rapidly locate minima of the flux potential. Section 4 describes methods

for investigating multi-field vacuum transitions while section 5 applies numerical techniques

to the specific problem of multi-field tunneling in a stringy flux landscape. The result is the

conifunneling phenomena described above. In section 6 we provide analytical arguments

and other supporting evidence for conifunneling as a general effect of transitions in the

vicinity of special points in a string-like potential landscape.

2. One-Parameter Calabi-Yaus and Flux Compactification

Given a compact Calabi-Yau manifold M, one can describe its moduli space of complex
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structures in terms of the periods of the holomorphic 3-form. The period integrals are

ΠI =

∫

CI

Ω =

∫

M
CI ∧ Ω, (2.1)

where Ω is the holomorphic 3-form and CI describes a basis of H3(M). The index I runs

from 0 to 2h1,2 + 1. The intersection matrix Q is given by

QIJ =

∫

M
CI ∧ CJ . (2.2)

The explicit form of Q depends on the choice of the basis CI . However it is always possible

to choose a basis where Q has the following symplectic form

Q =




−1

1

·
·

−1

1




. (2.3)

We refer to this as the symplectic basis of periods. The intersection matrix is invariant

under symplectic transformations. It is convenient to represent the periods using a vector

Π(z) =




ΠN (z)

ΠN−1(z)

·
·
·

Π0(z)




(2.4)

where N ≡ 2h1,2 +1 and z is an h1,2 dimensional complex coordinate on the moduli space.

In this paper, we deal with Calabi-Yau manifolds with one complex modulus, h1,2 = 1, so

z is a complex number. We use the symplectic basis above to generate the flux potentials

for the various models.

In general, the periods are subject to monodromies. Going around non-trivial loops

in the moduli space changes the periods. This change is given in terms of the monodromy

matrices T

Π → T · Π. (2.5)

The monodromy matrices preserve the intersection matrix and are thus elements of Sp(N,Z).

The Calabi-Yaus we consider have three mondromy matrices for each of the three special

points in the moduli space, the large complex structure point (LCS) at z = 0, the conifold

point at z = 1, and the Landau-Ginzburg point at z = ∞.

The periods behave in characteristic ways around the special points. Near z = 0,

Π0 ∼ 1, while the other periods go as Πi ∼ (log z)i with possible subleading log terms. Near
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the conifold point, the cycle whose period is Π3 collapses (absent effects from warping due to

fluxes or branes) while the dual cycle with period Π0 is only defined up to a monodromy.

The other two periods approach constant values near the conifold point. The behavior

around the Landau-Ginzburg point depends on the type of Calabi-Yau—in particular, the

14 one-parameter models break up into four families. The first set of models have regular

behavior around the Landau-Ginzburg point for an appropriately chosen complex structure

coordinate ψ. The remaining families involve some combination of periods developing

logarithmic behavior.

2.1 The Meijer basis of periods

The periods of a given Calabi-Yau are solutions to a set of differential equations called

the Picard-Fuchs equations. For one-parameter models, the equations reduce to a single

ordinary differential equation, whose natural basis of solutions are conveniently expressed

in terms of Meijer G-functions [13]. The Meijer basis of periods, Uj(z), j = 0, 1, 2, 3, proves

to be convenient for computing the monodromies around the special points in the moduli

space. In general, Meijer G-functions are solutions to ODEs of the form

δ

q∏

i=1

(δ + βi − 1)− z

p∏

j=1

(δ + αj)


 u(z) = 0, (2.6)

where δ = z d/dz. The class of Calabi-Yaus that we consider in this paper have βi = 0.

These are referred to as ‘the generic family of compact one-parameter models’ in [13]. The

periods satisfy the following Picard-Fuchs equation
[
δ4 − z (δ + α1)(δ + α2)(δ + α3)(δ + α4)

]
u(z) = 0, (2.7)

where αr are rational numbers. The monodromy matrices computed in appendix A describe

the effect on the Meijer periods upon going around the special points in the moduli space.

If T is a monodromy expressed in the Meijer basis, the monodromies in the symplectic basis

are given by LTL−1, where L transforms from the Meijer to symplectic basis of periods,

Π = LU .

We use the Meijer functions Uj(z) to construct the symplectic basis Π(z) for various

Calabi-Yaus (i.e. for different choices of αi). From the periods and a choice of fluxes we

calculate the N = 1 scalar potential for the complex structure modulus z. One needs some

numerical aid to do a reasonably speedy calculation of the Meijer periods. To facilitate the

computations in this paper, we used Mathematica to generate discretized Meijer functions

on square lattices on the complex plane with a spacing of 0.05 for each of the models

we investigated. Appendix C details precisely how the numerical Meijer functions are

computed and outlines the procedure for computing the Kahler potential, superpotential,

and flux potential built from these periods. Figure 2.1 shows a portion of one of the Meijer

functions for model 8 in appendix A.2.

2.2 Flux compactification

Flux compactifications of type IIB string theory on orientifolded Calabi-Yau manifolds

were studied in [14]. Wrapped 3-form fluxes can stabilize the complex structure moduli
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Figure 1: The Meijer function MeijerG[{{3/4,1/2,1/2,1/4},{}},{{0,0,0},{0}},-z] in Math-

ematica’s notation for these functions.

and axio-dilaton by inducing a flux potential that may possesses both supersymmetric

and non-supersymmetric minima (or perhaps neither). Non-perturbative and perturbative

corrections to the tree level flux potential can stabilize Kahler moduli [15, 16]. At tree

level, the flux potentials do not fix the overall volume of the Calabi-Yau and are thus

referred to as “no-scale” models. We focus on the no-scale GKP compactifications for any

given Calabi-Yau and thus, are only concerned with the dynamics of the axio-dilaton and

complex structure moduli.

Wrapping fluxes around the different 3-cycles of an orientifold of Calabi-YauM induces

the Gukov-Vafa-Witten potential:

W =

∫

M
Ω ∧

(
F(3) − τH(3)

)
= F · Π− τH ·Π ≡ A+Bτ, (2.8)

where the axio-dilaton τ = C(0) + ie−φ, and F and H are the Ramond-Ramond (R-R)

and Neveu-Schwarz Neveu-Schwarz (NS-NS) flux vectors, respectively. Since we are only

considering the cases with h1,2 = 1, the flux vectors F and H have 2h1,2 + 2 = 4 entries

whose values give the strength of the fluxes piercing the relevant dual cycle; F0 for example

represents the flux threading the cycle whose period is Π3.

The Kahler potential is given by

K = − log (−i(τ − τ̄ )) +Kcs (z, z̄)− 3 log (−i(ρ− ρ̄)) , (2.9)

where ρ = ρR+iρI is the volume modulus (also referred to as the universal Kahler modulus).

The volume of the Calabi-Yau goes like VCY ∼ ρ
3/2
I . We will assume that some mechanism

stabilizes this at a large value.
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The Kahler potential for the complex structure depends on the periods of the 3-cycles

Π and the intersection matrix Q

Kcs = − log

(
i

∫

M
Ω ∧ Ω

)
= − log

(
iΠ†Q−1Π

)
(2.10)

and has to be calculated individually for each Calabi-Yau.

Note that the above expressions are valid when the effects of warping are essentially

constant over the manifold. This assumption will suffice for constructing flux potentials

and searching for minima. However, the effects of warping will need to be considered when

we discuss tunneling between minima. A brief overview of dimensional reduction of type

IIB supergravity on a warped Calabi-Yau is provided in appendix B.

The scalar potential for the complex structure moduli is given by the N = 1 super-

gravity formula

V (z, τ) = eK
(
Kzz̄DzWDz̄W +Kτ τ̄DτWDτ̄W +Kρρ̄DρWDρ̄W − 3|W |2

)
, (2.11)

where Kij̄ = ∂i∂j̄K are the components of the Kahler metric. In no-scale models the last

two terms in Eq.(2.11) cancel as is easily checked using the Kahler potential (2.9). The

result is a flux potential given by

V (z, τ) = eK
(
Kzz̄DzWDz̄W +Kτ τ̄DτWDτ̄W

)
. (2.12)

The cancellation that yields the no-scale potential (2.12) means that DρW ∼ W . A

supersymmetric vacuum should satisfy DzW = DτW = 0 and W = 0. However, we shall

refer to vacua that satisfy the first two conditions as supersymmetric, regardless of whether

the superpotential vanishes.

The number of D3 branes ND3, the number of orientifold planes NO3 and the fluxes

are related by the tadpole cancellation condition

ND3 −
1

4
NO3 +

∫

M
F(3) ∧H(3) = 0, (2.13)

which can be rewritten as a condition on the flux vectors:

F ·Q ·H =
1

4
NO3 −ND3. (2.14)

2.3 The effect of monodromies

The potential V (z) is defined in terms of the periods, and so monodromy transformations

will in general change the potential:

W = (F − τH) · Π → (F − τH) · TΠ ·Π. (2.15)

This suggests that another way to account for the monodromies is to keep the periods fixed

and to change the fluxes:

F → F · TΠ,
H → H · TΠ. (2.16)
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Hence instead of going to a different sheet of the complex plane through the branch cut

originating from the special point (z = 0, 1,∞), one could just stay on the original sheet

and change the fluxes according to (2.16). The crucial point is that the new set of vacua

thus obtained by changing the fluxes are still continuously connected to the original set

of vacua due to the monodromies. This is how the authors of [10] generated multiple

connected flux vacua for the mirror quintic.

3. Finding Vacua

Compact one-parameter models were classified in [17]. The mirror quintic (model 1 in

appendix A.2 below) is the most familiar of these 14 models. The periods of these Calabi-

Yaus are solutions to a Picard-Fuchs equation specified by a set of four rational numbers αr

with r = 1, 2, 3, 4 (the mirror quintic corresponds to the case where αr = r/5). We provide

a table summarizing the various parameters that characterize all 14 models in appendix

A.2.

Following [13], we organize the examples as follows:

• Case 1: all αr’s different

(α1 6= α2 6= α3 6= α4; Models 1 – 7).

• Case 2: two of the αr’s equal to each other

(α1 6= α2, α1 6= α4, α2 6= α4, α2 = α3; Models 8 – 10).

• Case 3: two equal pairs

(α1 6= α3, α1 = α2, α3 = α4; Models 11 – 13).

• Case 4: All the αr’s equal

(α1 = α2 = α3 = α4; Model 14).

In this section we extend the analyses of [10] to new examples from each of these cases.

Finding vacua by hand is not an easy task. Away from special points in the moduli space,

one essentially must resort to trial-and-error methods [10]. Fortunately, we find that there

are useful tricks for finding analog vacua across the different compactifications, particularly

for vacua that lie within the unit disk in the z-plane. Furthermore, we adapt techniques

used to count vacua in the vicinity of special points in the moduli space [18] to generate

a potentially huge new number of vacua—many of which need not be near the original

special point. This allows for a more thorough exploration of flux potential topography.

3.1 Minimizing the axio-dilaton

The potential given in Eq.(2.12) depends on both the complex structure z and the axio-

dilaton τ . We would like to express the potential entirely in terms of z. To this end we

minimize the potential with respect to τ , i.e. impose the condition ∂τV (z, τ) = 0. This

minimization leads to the following quadratic equation for the axio-dilaton

α+ βτ̄ + γτ̄2 = 0 (3.1)
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where α, β and γ are real valued functions of the fluxes and z.

α = |A|2 +Kzz̄DzADz̄Ā,

β = ĀB +AB̄ +Kzz̄DzADz̄B̄ +K z̄zDz̄ĀDzB,

γ = |B|2 +Kzz̄DzBDz̄B̄. (3.2)

The quadratic equation can be solved to express τ in terms of the fluxes and z

τ(z) = − β

2γ
+

√
β2

4γ2
− α

γ
. (3.3)

The term under the square root is negative semidefinite. Since the string coupling is always

positive we have kept the plus sign in front of the square root.

The scalar potential can then be expressed as

V (z) ≡ V (z, τ(z)) =
ieKcs

τ − τ̄

(
α+ τ(z)β1 + τ(z)β2 + τ(z)τ(z)γ

)
, (3.4)

with

β1 = AB̄ +Kzz̄Dz̄ĀDzB,

β2 = ĀB +K z̄zDzADz̄B̄. (3.5)

Given the potential in this form, the minima we find in z will automatically minimize in τ

as well. This procedure is fine when searching for minima, but will have to be reconsidered

when we turn to studying tunneling transitions between vacua.

3.2 Flux vacuum distributions

In general, choosing fluxes such that the resulting potential exhibits at least one minimum

is a trial-and-error process. However, many vacua can be found by adapting the vacuum

counting methods of [18,19]. In principle, the following prescription can be performed for

any special point in the moduli space where one has analytic expressions for the Calabi-Yau

periods. For concreteness, we focus on generating vacua near the conifold point z = 1.

Near the conifold the periods can be expanded to linear order

Π3 ≈ ξ,

Π2 ≈ c0 + c1ξ,

Π1 ≈ b0 + b1ξ,

Π0 ≈ ξ

2πi
log(−iξ) + a0 + a1ξ, (3.6)

where ξ = d1(z − 1). The coefficients for any given model can be found by fitting the

functions above to the numerically computed periods in the vicinity of the conifold point

on a grid that goes from Re(z) ∈ [0.9, 1.1] and Im(z) ∈ [−0.1, 0.1] (see the end of appendix

F for the coefficients relevant to the mirror quintic model).
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The Kahler potential can be expressed as

K ≈ − log
(
µ0 + µ1ξ + µ1ξ̄ + µ2|ξ|2 log |ξ|2 + µ3|ξ|2 + · · ·

)
, (3.7)

where · · · indicates higher order terms in ξ. The coefficients are given by

µ0 = ib0c̄0 − ib̄0c0,

µ1 = ib1c̄0 − ib̄0c1 + iā0,

µ2 =
1

2π
,

µ3 = ib1c̄1 − ib̄1c1 − ia1 + iā1. (3.8)

We can now impose the conditions DξW = 0 and DτW = 0 and solve for log(−iξ) and
τ to leading order. The result is

τ =
F ·Π†

H ·Π†
≈ F1c̄0 + F2b̄0 + F3ā0
H1c̄0 +H2b̄0 +H3ā0

,

and

1

2πi
(log(−iξ) + 1) ≈

a0
µ1

µ0
−a1 −

(
(F2 − τH2)(c1 − c0

µ1

µ0
) + (F1 − τH1)(b1 − b0

µ1

µ0
)− (F0 − τH0)

F3 − τH3

)
.

Given the above we can randomly choose flux vectors F and H and assemble a list of

potential vacua. We drop candidate vacua whose ξ is too far away from the conifold or

whose Im(τ) too small (i.e. when the string coupling is large). By letting all entries of

the flux vectors range freely between flux values from −50 to 50 or so, and imposing the

tadpole condition, we are able to reproduce the sorts of scatter plots of near conifold flux

vacua found in [18]. These generally show that the flux vacua become increasingly dense

as one nears the conifold point as predicted in [20].

In addition to recreating these older results, we find that the distribution of flux vacua

around the conifold exhibits interesting structure when considered as a function of the value

of the various fluxes. We see in figures 2 and 3 that the distribution of vacua is insensitive to

the details of some of the fluxes (F0 and F2), while taken as functions of other fluxes we find

non-trivial behavior. For example, the distribution of vacua drops off as |F3| grows, and
does so even more severely for H1 and H3. The distributions exhibit bimodal behavior that

then decays for F1, H0, and H2. Understanding why these relationships exist is certainly

worthy of further investigation.

3.3 Vacuum statistics techniques and vacuum hunting

For topographical explorations we can restrict to flux vectors of a certain form to investigate

the connectivity of specific kinds of flux vacua. After generating a list of candidate vacua

whose fluxes and locations satisfy all of the conditions of interest, we plug the flux vectors

back into the numerical routines that generate the flux potential from the numerical period
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Figure 2: Distributions of flux vacua generated in 108 runs with all fluxes in the interval [−50, 50].

(a) The distribution sorted by F0 appears uniform. (b) The distribution sorted by F1 is bimodal

and decays. (c) Sorting by F2 appears also to yield a uniform distribution. (d) F3 peaks around

zero and decays.

functions. So long as the vacua generated via the Monte Carlo method above are not too

close to the conifold (where the numerics are inaccurate), we will find corresponding flux

vacua in the numerically generated flux potential. If we fail to find the vacuum we are

looking for there are three possibilities:

• Since the vacuum positions receive corrections it is possible that when we plug the

flux vectors back into the numerics, the vacuum position is corrected to be too close

to the conifold.

• It’s possible that the vacuum, after receiving corrections is too far from the conifold

point thus doesn’t actually exist. This is possible since for some distances, order ξ

terms can compete with order log ξ terms.

• Oftentimes, the candidate vacua generated above will exist in the numerical potential

but are found at flux vectors that differ by conifold monodromies. This is due to the

fact that the log function is not single-valued.
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Figure 3: Distributions of flux vacua generated in 108 runs with all fluxes in the interval [−50, 50].

The distributions in (a) and (c) are sorted by H0 and H2, respectively. They are both bimodal and

decay. Distributions (b) and (d) exhibit sharp peaks around H1 = 0 and H3 = 0, respectively with

rapid decays.

An observation related to the last point is that in many cases, flux vacua near the

conifold are connected via conifold monodromies to other flux vacua that need not be near

the conifold. Thus, the above method often allows one to identify chains of SUSY flux

vacua with several members far away from the conifold point.

In addition to the Monte Carlo method above, we have located some vacua via trial-

and-error choices of flux vectors. Once again, given a set of fluxes that produce a potential

with a minimum, monodromies can be used to search for connected vacua. We have found

that this tends to produce chains of vacua which we exhibit below.

By comparing flux vacua for the different models, we find that given a set of values

for F and H fluxes that produce a potential with a minimum within |z| < 1 in one model,

tend to produce potentials with similar minima in the other one-parameter models. We

exhibit series of such analog vacua in each of the models. It’s not hard to understand why

this is so: the potentials are all dependent on the form of the Meijer functions used to

compute the periods, and these functions do not differ drastically from model to model.

In particular, the asymptotics near the LCS point are quasi-universal, taking the following
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general form

Π3 ∼ α3t
3 + γ3t+ iδ3,

Π2 ∼ β2t
2 + γ2t+ δ2,

Π1 ∼ t,

Π0 ∼ 1, (3.9)

where t ∼ log z and the coefficients are all rational except δ3 ∼ ζ(3). All of the coefficients

and the precise behavior of t conspire to ensure that the monodromy around z = 0 in the

Meijer basis is the same for all models (see appendix A). On the other hand, the minima

that fall outside the unit circle |z| > 1 do not appear to have analogs from model to

model—or if they do, the analogs are less predictable and involve altering the fluxes. This

is likely due to the fact that away from the LCS point, the models’ periods exhibit more

unique behaviors, which is most easily seen by observing that the monodromies around the

Landau-Ginzburg point are unique to any given model.

To simplify our search for vacua, both using trial-and-error and Monte Carlo methods,

we use the SL(2,Z) symmetry of type IIB string theory to generally work with H fluxes

such that H3 = 0. This choice ensures that the action of a conifold monodromy only

alters the F fluxes. Another useful trick involves exploiting the properties of the potential

and string coupling under scaling of the flux vectors. When F → λF and H → ρH, the

potential goes like V → λρV , while the string coupling goes as gs → (ρ/λ)gs. Thus, if

while searching for flux vacua one encounters a candidate, but finds that it lies outside the

bounds of validity due to gs being too large, one can generate a potential of equivalent

shape, but with a suitably small gs by rescaling the fluxes. Note that this potential will

not generically be connected to the original potential through monodromies; for example,

one couldn’t ever connect two such potentials through monodromies around the conifold

point. It is unclear what this means: however, it is a useful shortcut for generating many

examples of flux vacua.

3.4 Non-SUSY vacua

We have tabulated several series of non-SUSY vacua for the various models. Vacua within

the unit disk |z| < 1 tend to have pretty clear analogs across the different models. Outside

this region, but not too far from it vacua have more sporadic analogs. These involve

tweaking the flux vectors in ways other than simple conifold monodromies.

Model Series Vacuum Flux Vectors z Vmin gs Monodromy

1 1 i F = (2, 9,−4, 1); −0.286 − 0.485i 8.664 0.144

H = (−1, 0,−7, 0)

ii F = (1, 9,−4, 1); −0.358 − 0.066i 8.452 0.159 T [1]−1

H = (−1, 0,−7, 0)

iii F = (0, 9,−4, 1); −0.020 + 0.225i 8.236 0.177 T [1]−1

H = (−1, 0,−7, 0)
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Model Series Vacuum Flux Vectors z Vmin gs Monodromy

2 i F = (4,−4,−1, 2); 0.751 − 2.322i 3.042 0.215

H = (1, 1, 6, 0)

ii F = (2,−4,−1, 2); −2.442 + 1.865i 2.849 0.218 T [1]−1

H = (1, 1, 6, 0)

iii F = (0,−4,−1, 2); −0.163 + 0.598i 2.778 0.207 T [1]−1

H = (1, 1, 6, 0)

2 1 i F = (2, 9,−4, 1); −0.184 − 0.418i 8.738 0.199

H = (−1, 0,−7, 0)

ii F = (1, 9,−4, 1); −0.196 − 0.063i 8.499 0.218 T [1]−1

H = (−1, 0,−7, 0)

iii F = (0, 9, 23, 32); 0.049 + 0.053i 8.252 0.248 T [0]−1T [1]−1

H = (−1, 1,−1, 3)

2 i F = (4,−4,−1, 2); −3.199 − 3.622i 2.510 0.198

H = (1, 1, 5, 0)

ii F = (2,−4,−1, 2); −2.148 + 2.032i 2.377 0.203 T [1]−1

H = (1, 1, 5, 0)

iii F = (0,−4,−1, 2); −0.490 + 0.484i 2.349 0.201 T [1]−1

H = (1, 1, 5, 0)

8 1 i F = (2, 9,−4, 1); −0.139 − 0.772i 8.689 0.106

H = (−1, 0,−7, 0)

ii F = (1, 9,−4, 1); −0.617 − 0.239i 8.502 0.117 T [1]−1

H = (−1, 0,−7, 0)

iii F = (0, 9,−4, 1); −0.444 + 0.329i 8.308 0.131 T [1]−1

H = (−1, 0,−7, 0)

iv F = (−1, 9,−4, 1); 0.078 + 0.461i 8.126 0.148 T [1]−1

H = (−1, 0,−7, 0)

2 i F = (4,−4,−1, 2); 0.925 − 1.892i 3.606 0.237

H = (1, 1, 7, 0)

ii F = (2,−4,−1, 2); −2.9 + 1.25i 3.354 0.237 T [1]−1

H = (1, 1, 7, 0)

iii F = (0,−4,−1, 2); −0.047 + 0.673i 3.412 0.209 T [1]−1

H = (1, 1, 7, 0)
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Model Series Vacuum Flux Vectors z Vmin gs Monodromy

12 1 i F = (3, 9,−4, 1); −0.284 − 0.443i 8.838 0.174

H = (−1, 0,−7, 0)

ii F = (2, 9,−4, 1); −0.350 − 0.018i 8.606 0.190 T [1]−1

H = (−1, 0,−7, 0)

iii F = (1, 9,−4, 1); −0.117 + 0.169i 8.373 0.209 T [1]−1

H = (−1, 0,−7, 0)

Table 1: Non-supersymmetric flux vacua.

3.5 SUSY vacua and SUSY chains

Some of the SUSY vacua for the mirror quintic found in [10] exhibited an interesting chained

structure: given a SUSY vacuum, winding around the conifold point would usually take

you to another one. Eventually, the vacua cease to be supersymmetric and have V 6= 0.

These vacua, uncovered in [10], are arrayed in quasi-circular chains around the LCS point.

In table 2 below we exhibit analog SUSY vacua in models 1, 8, 12, and 14. These vacua

are plotted on the z-plane in figure 4.

On examining these chains of vacua, one can see an approximate conjugation symme-

try; if there is a vacuum at some complex z there is usually a partner near to z̄. This is

also apparent in the example found in [10].

NS-NS Flux Model 1 Model 8 Model 12 Model 14

(-1,-6,-9,-1) 0.147+0.061 i – 0.0622 + 0.060 i –

(0,-6,-9,-1) -0.129+0.175 i 0.182 + 0.431 i -0.127 + 0.030 i –

(1,-6,-9,-1) -0.180-0.288 i -0.555 - 0.240 i -0.045 - 0.193 i –

(2,-6,-9,-1) 0.229-0.363 i 0.004 - 0.688 i 0.180 - 0.176 i -1.321 + 0.988 i

(3,-6,-9,-1) 0.463-0.124 i 0.508 - 0.528 i 0.273 - 0.000 i -1.007 - 1.036 i

(4,-6,-9,-1) 0.446+0.165 i 0.727 - 0.210 i 0.180 + 0.175 i 0.054 - 1.321 i

(5,-6,-9,-1) 0.174+0.380 i 0.758 + 0.081 i -0.044 + 0.196 i 0.691 - 1.027 i

(6,-6,-9,-1) -0.225+0.233 i 0.633 + 0.393 i -0.103 - 0.041 i 0.982 - 0.639 i

(7,-6,-9,-1) -0.038-0.194 i 0.256 + 0.663 i 0.071 - 0.029 i 1.071 - 0.308 i

(8,-6,-9,-1) 0.155-0.031 i -0.361 + 0.537 i – 1.056 + 0.045 i

(9,-6,-9,-1) – -0.427 - 0.316 i – 1.074 + 0.231 i

(10,-6,-9,-1) – – – 1.023 + 0.536 i

(11,-6,-9,-1) – – – 0.805 + 0.913 i

(12,-6,-9,-1) – – – 0.280 + 1.265 i

(13,-6,-9,-1) – – – -0.675 + 1.231 i

(14,-6,-9,-1) – – – 1.569 - 0.174 i

Table 2: Chains of supersymmetric vacua connected via conifold monodromies. The complex

numbers in the table are the locations of the vacua in the z-plane. Note that all vacua have

H = (−1, 0,−7, 0).

Looking at the table, one sees that model 14 appears to be a bit of an outlier. It

exhibits the same patterns as the other models, but all of its vacua lie outside the unit
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Figure 4: The supersymmetric chains with H = (−1, 0,−7, 0) for four models. The circular dots

are the locations of the vacua in the z-plane. The square dot indicates the LCS point z = 0. In

each panel the initial dot is circled. Panel (a) is the chain for the mirror quintic starting with

F = (−1,−6,−9,−1). Panel (b) is the chain for model 8 with initial F = (0,−6,−9,−1). Panel

(c) is the chain for model 12 with initial F = (−1,−6,−9,−1). Panel (d) is the chain for model 14

with initial F = (2,−6,−9,−1).

circle in the z-plane. Model 14 turns out to be a rather special case. On comparing

the asymptotic expansions around the LCS and Landau-Ginzburg points in this model,

one finds that the periods around either point are related by a rescaling of z−1/2 and a

basis change [21]. This suggests that the model may have an analog of T-duality which
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exchanges z and 1/z. One can actually think of two equivalent models in which either z or

1/z is taken as the natural coordinate around the LCS point. Just as with T-duality, one

imagines these to be glued along the unit circle, so that when |z| becomes too large, the

proper description shifts to the model in terms of 1/z. Such a construction would eliminate

the vacua for model 14 listed in table 2 and depicted in figure 4. However, this is mostly

speculative and we will not delve into this issue further in this paper.

Our Monte Carlo search for vacua also turned up a new type of SUSY vacuum chain,

exhibited in table 3 and figure 5. These appear to arc away from z = 0 in ever larger jumps

from the conifold point as one performs inverse conifold monodromies. There appear to

be accumulations of vacua approaching z = 0, but since the numerical methods only give

us access to a finite grid with finite resolution on the moduli space, we cannot tell if the

vacua that lie outside the unit circle extend forever, and we cannot resolve whether vacua

continue to accumulate near z = 0 indefinitely.

4. Vacuum Transitions

Having found several examples of supersymmetric and non-supersymmetric vacua, we now

turn our attention to vacuum transitions. Although different vacua have different flux

configurations, monodromies can connect certain vacua in a single continuous potential

with multiple sheets as exemplified in tables 3.4 and 2 above. As pointed out in [7–9],

tunneling with multiple fields can be quite subtle—we should not expect to easily guess

a path connecting two vacua in the potential and then construct the Coleman-deLuccia

(CDL) instanton [22]. Thus, before we look for the actual string theory instantons, here

we give a general overview concerning multifield tunneling.

4.1 A nontrivial generalization

Consider a potential V (φ) with false vacuum φ(1) and true vacuum φ(2). In field theory,

the tunneling transition is given by an instanton—a field configuration whose Euclidean

action

SE =

∫
dx4

(
(∂φ)2

2
+ V

)
(4.1)

is a saddle point with exactly one negative mode. It was proved to be an O(4) symmetric,

Euclidean solution of the following equation of motion with given boundary conditions:

d2φ

dr2
+

3

r

dφ

dr
=
dV

dφ
, φ̇(0) = 0, φ(∞) → φ(1) , (4.2)

where φ(0) is somewhat close to φ(2). Including gravity, the solution is similarly a topo-

logical 4-sphere with O(4) symmetry:

d2φ

dr2
+

3

a(r)

da

dr

dφ

dr
=
dV

dφ
,

1

2

(
dφ

dr

)2

+ V =
3

a2

(
da

dr

)2

. (4.3)
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NS-NS Flux Model 1 Model 8 Model 12

(3, -18, 9, -1) −0.001 − 0.071 i – –

(4, -18, 9, -1) 0.011 − 0.083 i – –

(5, -18, 9, -1) 0.024 − 0.093 i – –

(6, -18, 9, -1) 0.067 − 0.134 i – –

(7, -18, 9, -1) 0.111 − 0.156 i 0.137 − 0.315 i 0.0673958 − 0.0806928 i

(8, -18, 9, -1) 0.165 − 0.179 i 0.192 − 0.361 i 0.10864 − 0.090557 i

(9, -18, 9, -1) 0.227 − 0.195 i 0.254 − 0.406 i 0.150319 − 0.0941855 i

(10, -18, 9, -1) 0.298 − 0.204 i 0.323 − 0.450 i 0.194668 − 0.091672 i

(11, -18, 9, -1) 0.375 − 0.206 i 0.398 − 0.493 i 0.23935 − 0.0830528 i

(12, -18, 9, -1) 0.459 − 0.200 i 0.477 − 0.534 i 0.293778 − 0.0684983 i

(13, -18, 9, -1) 0.546 − 0.185 i 0.560 − 0.574 i 0.347221 − 0.0483759 i

(14, -18, 9, -1) 0.635 − 0.162 i 0.646 − 0.616 i 0.401897 − 0.0209002 i

(15, -18, 9, -1) 0.724 − 0.131 i 0.734 − 0.660 i 0.4568 + 0.0119374 i

(16, -18, 9, -1) 0.810 − 0.093 i 0.827 − 0.712 i 0.510894 + 0.0506745 i

(17, -18, 9, -1) 0.889 − 0.050 i 0.925 − 0.774 i 0.563092 + 0.0949499 i

(18, -18, 9, -1) 0.957 − 0.005 i 1.033 − 0.851 i 0.612196 + 0.144716 i

(19, -18, 9, -1) 1.041 + 0.044 i 1.154 − 0.950 i 0.657017 + 0.200672 i

(20, -18, 9, -1) 1.129 + 0.092 i 1.296 − 1.077 i 0.69653 + 0.264578 i

(21, -18, 9, -1) 1.243 + 0.165 i 1.466 − 1.244 i 0.729777 + 0.33926 i

(22, -18, 9, -1) 1.379 + 0.268 i 1.676 − 1.464 i 0.756487 + 0.428029 i

(23, -18, 9, -1) 1.544 + 0.414 i 1.940 − 1.760 i 0.774739 + 0.534383 i

(24, -18, 9, -1) 1.740 + 0.621 i 2.281 − 2.167 i 0.78168 + 0.661604 i

(25, -18, 9, -1) 1.968 + 0.916 i 2.728 − 2.741 i 0.772258 + 0.812786 i

(26, -18, 9, -1) 2.225 + 1.342 i 3.332 − 3.585 i 0.738964 + 0.990706 i

(27, -18, 9, -1) 2.498 + 1.963 i 4.168 − 4.880 i 0.671106 + 1.19711 i

(28, -18, 9, -1) 2.743 + 2.883 i – 0.554217 + 1.43178 i

(29, -18, 9, -1) 2.853 + 4.259 i – 0.369054 + 1.69091 i

(30, -18, 9, -1) – – 0.0910431 + 1.9635 i

(31, -18, 9, -1) – – −0.309701 + 2.22908 i

(32, -18, 9, -1) – – −0.863008 + 2.44355 i

(33, -18, 9, -1) – – −1.60096 + 2.54456 i

(34, -18, 9, -1) – – −2.53126 + 2.42602 i

(35, -18, 9, -1) – – −3.61356 + 1.94421 i

(36, -18, 9, -1) – – −4.72581 + 0.913417 i

Table 3: New type of chains of SUSY vacua connected via conifold monodromies. The complex

numbers in the table are the locations of the vacua in the z-plane. Note that all vacua have

H = (−2,−4,−33, 0). The entries marked – indicate the end of the series according to the numerics,

but it is possible that these series extend indefinitely.

Here the boundary conditions are dφ/dr = 0 at the two poles (where a = 0) of this

topological 4-sphere.
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Figure 5: The supersymmetric chains with H = (−2,−4,−33, 0) for three models. The circular

dots are the locations of the vacua in the z-plane. The square dot indicates the LCS point z = 0.

Panel (a) is the chain for the mirror quintic starting with F = (3,−18, 9,−1). Panel (b) is the

chain for model 8 with initial F = (7,−18, 9,−1). Panel (c) is the chain for model 12 with initial

F = (7,−18, 9,−1).

Such an instanton solution is numerically quite tractable through the overshoot/undershoot

strategy given by Coleman. Basically, one starts from a field value near the true vacuum,

integrates the equations and see what happens at the other boundary. The result may
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either fail to reach the false vacuum (undershoot), or go past the false vacuum (overshoot).

Repeating the process can get you arbitrarily close to a true solution which just reaches

the false vacuum.

The same strategy fails for multiple fields. When you miss the false vacuum in a

multidimensional field space, it is not simply an undershoot or an overshoot. You may try

to keep shooting and see if you get lucky, but we know even if the numerics are very precise,

a small change in the initial condition can be magnified (in a practically unpredictable

way) while integrating the equations of motion. In addition to the unwieldy errors that

propagate from initial conditions, other numerical errors also accumulate. Although one

can envision Monte Carlo processes that would aid one in applying the shooting strategy,

such approaches will not be necessary for our purposes and we do not pursue them here.

Instead of the undershoot/overshoot approach, we consider a special class of simple

and widely studied instanton solutions—the thin wall instantons. In these situations the

action can be written as

SE =

∫ r̃

0

4π

3
r3drV2 +

∫

thin wall

4π

3
r3dr

(
φ′2

2
+ V

)
+

∫ ∞

r̃
4πr3drV1

=
π

3
r̃4(V2 − V1) +

4π

3
r̃3σ + Sφ(1) . (4.4)

The dependence of SE nicely factorizes into the size of the bubble r̃, and the dependence

of the domain wall tension σ on the field configuration φ. With fixed tension, we find that

SE is maximized by choosing

r̃ = rc =
3σ

(V1 − V2)
. (4.5)

This is the only negative mode in the action. Namely, it reduces our problem to minimizing

the tension with respect to different field configurations. Generalizing to multiple fields,

we look for a path in the multidimensional field space which minimizes

σ =

∫
dz

(
Gij

2

dφi
dz

dφj
dz

+ V − V1

)
. (4.6)

Since we are dealing with a minimization problem (rather than looking for a saddle point),

we can apply the “relaxation method”1 which will be described in more detail in section 5.

Note that we introduced a nontrivial metric Gij that depends on the fields φi, since with

multiple fields we cannot in general absorb it via field redefinition. In fact, the non-trivial

metric on field-space plays a crucial role in the dynamics. Despite this, basic aspects of

the problem do not change; for example, once we find the minimizing path, it solves the

equations of motion and gives us a familiar formula

σ =

∫

path

√
2(V − V1)

√
Gijdφidφj . (4.7)

We will always assume that we can have a thin wall bubble. Therefore, the search for

an instanton reduces to the search for a tunneling path through the multidimensional field

space.

1It was first introduced to this problem in [7] and applied in [23].
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4.2 Intuitions for multifield tunneling

Our primary method for finding the correct path is the relaxation technique mentioned

above. Usually, applying relaxation involves cleverly designing a quantity to be relaxed

which may have little connection to any physical quantity we truly care about. In our case,

relaxation is much more natural since we wish to address the physical problem of finding

dominant contributions to a path integral. The quantity being relaxed, σ, enters the action

directly and indeed a path contributes more as σ varies more and more slowly. That being

said, we cannot totally depend on numerical techniques, however naturally suited to our

problem they might be. Here we will provide some intuitions for analytical approaches.

The combination of numerical and analytical reasoning will eventually lead to a satisfying

answer.

One way to simplify the problem of finding the correct path is to reduce the effective

number of relevant fields, even down to a single field if possible. For example, given

a potential V (φi) of n fields with two vacua φ
(1)
i and φ

(2)
i , we can look for a subspace

containing those vacua, parametrized by ψj

φi = fi(ψj) , j = 1 ∼ m , m < n , (4.8)

such that this subspace is a local minimum along all orthogonal directions.

∀ l = 1 ∼ (n −m) , k = 1 ∼ m ,

Gij θ
l
i

∂fj
∂ψk

= 0 , Gij θ
l
iθ

l
j = 1 ,

∂V

∂θ
= 0 ,

∂2V

∂θ2
> 0 .

Then we can solve the problem with fewer fields,

Ḡkl = Gij
∂fi
∂ψk

∂fj
∂ψl

,

V̄ (ψj) = V (fi(ψj)) . (4.9)

This formalism looks especially promising when the (n−m) degrees of freedom removed

are heavy, namely when
∂2V

∂θ2
≫ 1

Ḡkl

∂2V

∂ψk∂ψl
. (4.10)

This is essentially the same as integrating out the UV spectrum to study the low energy

effective theory. In the simplest case where n = 2,m = 1, this can be visualized as a valley

that connects two vacua.

Unfortunately, this does not work in general. First of all, there is no guarantee that

the potential has a valley. Even if it does, recall that a tunneling path is a path of classical

motion in the inverse potential, −V . A valley in the potential corresponds to a mountain

ridge in the inverse potential. In the case of heavy transverse fields, this mountain ridge is

narrow and steep. Obviously it is very easy to roll down the slope and there is no guarantee

that a classical path follows the ridge (this is only possible when it is extremely straight).

Examples where no paths follow a valley can be found in appendix D.
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Even though nàıve integrating out of fields is dangerous, low energy effective theories

should be safe as long as we treat them carefully. In the case where a nàıve tunneling path

within the low energy theory is fake, like the ones in appendix D, either it is illegal to

integrate out along the path in the first place, or you will find that the tension of the fake

path is comparable to the mass of the heavy fields, namely the UV cutoff scale of your low

energy theory2.

On the other hand, the analogy to classical motion implies that we can ignore light

enough degrees of freedom. Imagine adding a flat direction to a standard (φ2−1)2 potential.

Obviously it is still a single field problem. Now imagine that the extra direction is not

exactly flat, but instead, it varies in energy scale much less than the (φ2 − 1)2 potential.

The induced dynamics in the orthogonal direction will be so weak that we can still ignore

them. Basically, the path wants to stay straight, because the change in the potential is too

small to justify the gradient of a curvy path. So, in searching for a tunneling path, we can

freeze light degrees of freedom. In the string theory context, we imagine that the Kahler

moduli will be stabilized by something akin to the KKLT mechanism [15] at a much lower

scale, so we can just freeze them and study tunneling paths in the 4D field space of the

complex structure modulus z and the axio-dilaton τ .

Typically we cannot reduce a problem all the way down to a single field, but even so, we

do not need to resort to a purely numerical investigation. Recently, several authors realized

that the global properties of a potential play important roles in tunneling paths [7–9]. In

potentials with a run-away direction—for example with decompactifying extra dimensions

or a dilaton field—it was shown that tunneling paths tend to take an excursion through

those directions. As demonstrated in appendix D and with the mirror quintic Calabi-Yau

in section 5, numerical methods help to find these global paths. Once they are found, we

can study them analytically and gain deeper insights as in section 6.

5. Numerical Conifunneling

In this section we apply the numerical relaxation method to find domain wall solutions in

degenerate vacua—these solutions are excellent approximations to instantons with weakly

non-generate vacua. We will focus on the technicalities of the method, and demonstrate

that the solutions we find are robust. We postpone discussing the physical interpretation

of our solutions to the next section 6, and hence this section can be skipped by those who

do not have a strong interest in the numerical analysis.

Nevertheless, we cannot resist providing a brief description of the results here. Our goal

is to look for instantons between vacua that reside on separate sheets of the flux potential.

In our construction, such vacua are associated with the monodromy transformations around

the conifold point. If we take the perspective of the monodromies acting on the fluxes, the

instantons describe tunneling between different flux compactifications.

It will turn out that the bounce solution connecting these flux vacua generically passes

very close to the conifold point. The instanton solution is driven there by the presence of

2We thank Alberto Nicolis and Eduardo Ponton for pointing out this issue. We also thank Erick Weinberg

for making it clear.
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non-trivial kinetic terms despite the seeming lack of an obvious path in the potential. This

behavior is natural: flux transitions are associated with the nucleation of branes and the

moduli dynamics appear to “know” that it is energetically easier to nucleate a brane near

the conifold point.

Seeing this behavior numerically requires knowledge of both the Kahler metric and the

potential in both the bulk (i.e. far away from the conifold and near the vacua), and near

the conifold point in the field space. In sections 2 and 3 we have calculated the potential

numerically, but the technique becomes computationally prohibitive near the conifold point.

Fortunately, the near conifold behavior can be treated analytically as detailed in appendix

F. The bulk and near-conifold constructions could then be glued to obtain a full flux

potential that describes both the bulk and the near conifold region. However, relaxation

is rather easier to implement when we split the problem into two parts: relaxation in the

bulk and relaxation in near the conifold point.

5.1 Equations of motion and set-up

Our goal is to find domain wall solutions using the relaxation method for this system given

an action in the Einstein frame

L = − (Kzz̄∂µz∂
µz̄ +Kτ τ̄∂µτ∂

µτ̄) + V (z, τ) (5.1)

where z is the complex structure modulus and τ is the axio-dilaton field. We assume that

the Kahler moduli fields ρ are frozen by some mechanism (perturbative or non-perturbative)

and that they do not contribute to the dynamics, so we will simply treat them as constants

in this section. Hence, we have a system with four real fields. It is convenient to choose

the following parameterization

reiθ ≡ z − 1 , τ ≡ u+ iv (5.2)

where φ ≡ {r, θ, u, v} are all real dynamical fields which we have collected into a vector φ

for notational simplicity. In the same vein, we also define

Kzz̄ ≡
1

2
f(r, θ) (5.3)

and remind the reader that

Kτ τ̄ =
1

2

1

4v2
. (5.4)

We are looking for domain wall solutions which are effectively 1+1 dimensional, hence

without any loss of generalities we can choose (x, t) as coordinates. Ignoring gravity, the

equations of motion are

f(r̈ − r′′) +
1

2
(ṙ2 − r′2)− 1

2
∂r(r

2f)(θ̇2 − θ′2) + ∂θf(θ̇ṙ − θ′r′) + ∂rV = 0

fr2(θ̈ − θ′′) +
1

2
r2∂θf(θ̇

2 − θ′2)− 1

2
∂θf(ṙ

2 − r′2) + ∂r(fr
2)(ṙθ̇ − r′θ′) + ∂θV = 0

− 1

2v3
(v̇u̇− v′u′) +

1

4v2
(ü− u′′) + ∂uV = 0

− 1

4v3
(v̇2 − v′2) +

1

4v3
(u̇2 − u′2) +

1

4v2
(v̈ − v′′) + ∂vV = 0(5.5)
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with dots and primes denoting space derivatives.

Domain wall solutions, φ∗(x), are static solutions to the set of differential equations

(5.5) with boundary conditions

φ∗(x→ −∞) = φ1 , φ∗(x→ ∞) = φ2 (5.6)

where φ1 and φ2 are the locations of the minima.

We solve (5.5) on a finite 1-dimensional grid, with a domain {xmin, xmax} where the

domain’s size is much larger than 1/m, m being the characteristic mass of the domain

wall3. In practice, we choose the size of the domain to be a balance between accuracy

and computational efficiency. Once a solution is found, we vary the size of the domain to

ensure that the results are robust.

We insert a test solution at some initial time t0, φ0(x, t0) = φ∗(x) + ∆φ(x, t0), where

the difference ∆φ is preferably, but not necessarily, small compared to φ∗(x). In addition

to possessing the correct boundary conditions, we fix the first derivatives at the boundaries

to be identically zero at all time

φ̇(xmax, t) = φ̇(xmin, t) = 0. (5.7)

Given these boundary conditions, we then guess several initial profiles for r0(x, t0) and

θ0(x, t0) that interpolate between the two vacuum positions. Using these test profiles we

find the corresponding minimum points of a given r and θ for u0(x, t0) and v0(x, t0), which

we can find by solving for4

∂V

∂u
(u0, v0) = 0 ,

∂V

∂v
(u0, v0) = 0. (5.8)

The total energy functional of the system is the integral of the Hamiltonian over the

domain5

E[φ(x)] =

∫ xmax

xmin

dx

[
1

2
f(ṙ2 − r′2 + r2θ̇2 − r2θ′2) +

1

8v2
(u̇2 − u′2 + v̇2 − v′2) + V (r, θ, u, v)

]
.

(5.9)

Bogomolny’s bound tells us that the true domain wall solution, if it exists, minimizes the

total energy of the system

E[φ(x)] ≥ E[φ∗(x)]. (5.10)

Hence any deviation from the true solution means that there is additional energy in

the system, which manifests itself as scalar radiation as the fields seek to relax to their

3This is not known in advance of course, but one can make a good guess at a value just after a few

iterations of our prescription.
4This choice for u0 and v0 is motivated by the fact that we expect that in the actual domain wall solution

u and v do not deviate radically from this global minimum solution. However, they do deviate in general,

which we can easily see by their equations of motion (5.5): the spatial derivatives must be supported by a

non-zero derivative of the potential.
5We have suppressed two spatial dimensions – the energy functional is formally infinite if integrated over

these suppressed dimensions.
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true minimum energy configuration. In a perfect world, the radiation propagates to spatial

infinity, never to be seen again. However, our fixed boundary conditions act as a rigid

barrier at finite distance, and hence radiation will bounce back from this barrier and remain

in the system. To remove this radiation, we introduce friction terms into the equations of

motion

φ̈+ φ′′ + ... = 0 → φ̈+ φ′′ + ...+ λ(t)φ̇ = 0, (5.11)

allowing the fields to relax into the true minimum energy configuration (i.e. a domain

wall). Note that we allow the friction term to be a function of time; we will say a bit more

about how we engineer the friction term later. In principle, the friction term turns itself

off once the static solution has been found. We check for the robustness of our solution by

manually turning off the friction term.

The test solutions themselves are not very important. In practice, we find that a

well chosen initial profile may speed up the computation marginally, but most guesses find

identical static solutions in the end. More insidious however, is the possibility that there

exist multiple static solutions which are not the minimum energy solution φ∗. To test for

that, we choose several different initial profiles with different initial total energy and check

that they all relax to the correct solution6.

In addition, there may be no solution. The simpler case of this possibility is that the

total energy becomes negative after some time. Since our potential is bounded from below

and positive, V > 0, this never happens. More difficult to detect is the possibility is that

the field approaches, but never quite converges to, a static configuration. In this case,

the system never completely relaxes and long code run times may be mistaken for a true

solution. We can check for this by taking the time derivative of the total energy, but in

practice we never encounter such a situation.

In the following sections, we separate the field space into two regimes: far away from

the conifold point r > 0.1 which we call the bulk and the near conifold regime where

r < 0.1. The cut-off at r = 0.1 is arbitrary, motivated by the fact that we lack accurate

numerical data for the potential below this point. Near the conifold point, the calculation

of the potentials is tractable analytically as demonstrated in appendix F. Note that the

numerical bulk potential does not include the effects of warping, but since the data is only

really accurate up to r > 0.1 and strong warping is not expected to be important until

r ≪ 1, this is not a problem.

In summary, we find that in the bulk relaxation phase, the field profile for r relaxes

towards the conifold point rapidly, reaching r < 0.1 where we do not possess numerical data

for the potential. To investigate the near conifold behavior, we use our analytic potentials

and find that the field profiles do indeed continue to be driven to near r = 0, but then

making a turn-around back into the bulk. While deep inside the near conifold regime, we

find that θ makes a rapid transition across the sheets, hence tunneling across a monodromy

transition. We dub this behavior, where the fields are driven towards the conifold point in

order to transition into a new flux configuration conifunneling.
6More amusingly, we check for the robustness of our relaxation code by constructing potentials where

there exist more than one static solution, i.e. one of them has a higher total energy so it is the subdominant

path. We find that indeed different initial profiles will relax to different static solution.
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5.2 Relaxation in the bulk

We first look for domain wall solutions between two SUSY vacua related by a conifold

monodromy in the bulk. For concreteness, we choose our vacua in the mirror quintic

compactification (model 1) from table 2:

F1 = (3,−6,−9,−1) → F2 = (2,−6,−9,−1) (5.12)

H1 = (−1, 0,−7, 0) → H2 = (−1, 0,−7, 0). (5.13)

The potentials at each corresponding sheet in z-space are generated using numerically

computed Meijer functions as described in section 2. The vacuum positions are essentially

those given in table 2, but to greater precision, they are

z1 = −0.4628 + 0.1237i (5.14)

z2 = 0.2286 + 0.3631i. (5.15)

We use coordinates (r, θ) around the conifold point to unwrap the potential and stitch the

data together across the sheets. From this, we generate the effective super- and Kahler

potentials. The vacua positions in these coordinates are then, with θ = 0 being the branch

cut,

φ1 = (r1 = 0.55, θ1 = −2.92, u1 = −3.41, v1 = 4.22) (5.16)

φ2 = (r2 = 0.85, θ2 = 3.58, u2 = −3.37, v2 = 4.17). (5.17)

The vacuum positions for τ = u + iv are found using conditions (5.8). We use the

following test profile

θ(x, t0) =
2(θ1 − θ2)

π
tan−1

(
ex/δ

)
+ θ2 (5.18)

r(x, t0) =
2(rmin − r1)

π
tan−1

(
e(x−x2)/∆1

)
+

2(r1 − rmin)

π
tan−1

(
e(x−x2)/∆2

)
+ r1

(5.19)

where ∆, δ are parameters which control the initial test thickness of the walls, while rmin

sets the datum for the turn around point (see figure 6).

We then run relaxation simulations, using uniform and constant friction for all 4 dy-

namical fields, varying both the initial test profiles and the magnitude of the friction

(ranging from λ = 0.1 to λ = 10) to ensure that our general conclusions are robust.

Generically, the field profile for r rapidly relaxes to near the conifold point r < 0.1

where we do not possess good numerical data for the bulk flux potential (see figure 7),

hence the simulation breaks down at this point. We emphasize that this behavior is driven

by the presence of the non-trivial Kahler factor in the kinetic terms of the equations of

motion, in particular Kzz̄. We will discuss this further in the section 6.2.
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(a) (b)

Figure 6: Initial (red) and final (blue) profiles for the complex structure field r (left) and θ

(right) in the bulk relaxation phase. We stopped the simulation at the final configuration, r < 0.1

even though the fields are still not static (indeed they are highly dynamical) since we do not have

numerical data for the potentials. Nevertheless, it is clear that the path between the two vacua is

rapidly relaxing to the conifold point. We will replace the numerical potential with a near-conifold

analytical potential in the next section.

(a) (b)

Figure 7: Figures showing the path of the complex structure (r, θ). On the left, we superimposed

the initial (black) and final (red) profiles of the bulk relaxation phase over the reduced potential

V (r, θ, umin(r, θ), vmin(r, θ)), where umin and vmin are global minima for τ found using (5.8). On the

right, we suppress the structure of the potential, but instead plot the final path in polar coordinates.

The two sheets are joined at θ = 0 with r = 0 being the conifold point. It is clear from this picture

that the path traverses close to the conifold point as it wanders down the “funnel”.

5.3 Results from relaxation in the vicinity of the conifold point

In order to investigate the behavior of the solutions near the conifold point, we use the

analytical approximation described in appendix F:

Vnc =
1

16τIρ
3
I

((
1

2π
log

Λ6
0

|0.35r|2 +K1 +
C1

|0.35r|4/3
)−1 ∣∣∣∣

FA

2πi
log 0.35r +A1 − τB1

∣∣∣∣
2

+ |A2 + τ̄B2|2
)
.

(5.20)

Note that this is simply equation (F.13), with the rescaling |ξ| = 0.35r for consistency with

the notation we are using in this section. The parameters of this near conifold potential

are derived assuming that the two vacua are associated by the monodromy described by
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(5.16). See appendix F.4 for the values of the parameters derived from our numerical data

for the mirror quintic with the fluxes chosen as above.

(a) (b)

Figure 8: Initial (blue) and final (red) profiles for the complex structure field r (left) and θ (right)

in the near-conifold relaxation phase. In the final configuration, a static solution is achieved and

hence is a true domain wall solution. The complex structure modulus funnels very close to the

conifold point, the proximity depending on how strong the warping is. In terms of the r and θ

fields, it is clear that a very sharp θ transition occurs when the field is near the conifold point

r ≪ 1. This indicates that there are three clear phases in the entire process—a shrinking of the

3-cycle associated with the formation of the conifold, a monodromy transition as θ tunnels into the

next sheet, and then a return of the 3-cycle to near its original size. We will discuss this further in

section 6.
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Figure 9: The final (red) profiles for the axio-dilaton field u (left) and v (right), and the global

minima (black) umin (left) and vmin (right) in the near-conifold relaxation phase. In the final

configuration, a static solution is achieved and hence is a true domain wall solution. It is clear from

the equations of motion (5.5) that umin and vmin are not static solutions. The actual final static

domain wall solutions are mildly localized. The global minimum solution exhibits a sharp feature

as expected from the highly localized nature of the complex structure z domain wall solution.

This approximation becomes almost exact near the conifold r < 0.1, but breaks down

in the bulk. The key feature that is lost is the existence of the original vacua. To stabilize

the vacuum positions, we drill Gaussian SUSY vacua into the potential

Ṽ = Vnc + V1 + V2 (5.21)
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with

Vi = −Vnc(ri, θi, ui, vi)e[−(θ−θi)
2−(r−ri)

2]/σ2
(5.22)

where σ is the width of the Gaussian holes. At these vacuum positions, Vi = 0. The

positions of the holes are matched to the actual vacuum positions for their respective flux

configurations, as given in (5.16). Note that we do not drill holes in the τ directions; we

simply solve for the minima of τ via equation (5.8) as in section 5.2. Since the behavior of

the domain wall will be dominated by the near conifold regime, we do not try to reproduce

the shape of the potentials beyond this modification. As long as the solution conifunnels

towards r → 0 when it is at r > 0.1 we are satisfied with the overall bulk behavior.

Nevertheless, there remain two subtleties involved in choosing the exact coefficient for

the strong warping factor C1. First, in principle it may depend on τ , although such a

dependence will not greatly effect the behavior of τ . Second, the exact numerical value of

this coefficient is treated as a free parameter related to the overall volume of the Calabi-

Yau manifold. Consistency requires that the parameter be chosen small enough so as not

to have any effects on the bulk of the moduli space. For the purpose of our numerical

simulation, we choose C1 such that the warping term is subdominant when r ≈ r1,2 i.e.

C1 ≪
(

1

2π
log

Λ6
0

|0.35r|2 +K1

)
|0.35r|4/3 at r = r1, r2. (5.23)

Again, we use the test solutions (5.18) and (5.19), varying the test parameters to

ensure robustness of our conclusions (figures 8 and 9). However, due to the strong warping

term r−4/3 in the flux potential, instead of inserting constant friction terms for all our field

equations, we use instead an exponentially damping friction

λφ(t) = λφ(t0)e
−α(t−t0) (5.24)

where α is some parameter which governs how rapidly friction is turned off7.

The static solutions are shown in figure 5.3. The solution relaxes towards the conifold

point as we have seen in the previous section using the bulk potential. However, instead

of falling into an abyss, the domain wall solution passes very close to the conifold point,

and then turns back up into the bulk. In other words, a stable static domain wall solution

exists between two vacua related by a monodromy transformation. Moreover, the domain

wall passes very close to the conifold point—the exact proximity being determined by the

coefficient in front of the strong warping term r−4/3 in the flux potential. The smaller the

coefficient, the later the turn-around occurs8.

6. The Physics of Conifunneling

Despite trying to find a tunneling path through non-singular parts of the Calabi-Yau moduli

space, numerical relaxation drove our solutions into the vicinity of the conifold. These

7We also imposed a hard cut-off of the friction when we check for stability after a solution is obtained.
8We note that although both log r and r

−4/3 blow up as r → 0, the rate at which this blow up occurs

is crucial in determining whether the domain wall will turn around sufficiently quickly (see section 6.2).
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(a) (b)

Figure 10: Figures showing the path of the complex structure (r, θ). On the left, we superimposed

the initial (black) and final (red) profiles of the bulk relaxation phase over the “reduced” analytic

near-conifold potential Vnc(r, θ, umin(r, θ), vmin(r, θ)), where umin and vmin are global minima for

τ found using (5.8). On the right, we plot the final path in polar coordinates, suppressing the

gaussian vacuum holes but keeping the structure of the potential near the conifold visible – the

strong warping term r−4/3 suppresses the potential deep inside the conifold point, resulting in a

potential that looks like a true “funnel”. The two sheets are joined at θ = 0 with r = 0 being

the conifold point. The final static path falls deep into the funnel but reemerges on the other

side of the monodromy—the conifold funnels the path across the monodromy, hence our moniker

conifunneling.

instantons represent conifunneling. Relaxation was only able to succeed due to the crucial

effects of strong warping, analyzed in [30–32], and described both in general and for the

conifold in appendices B and E, respectively. The usual simplification of assuming away

such effects is a problematic strategy when one is interested in studying the dynamics of

fields in the string theory landscape. In this section we draw some lessons for dealing with

more general landscape tunneling problems.

6.1 Geometric interpretation

Figure 11 shows the value of the tension integrand in terms of five separate terms: kinetic

terms in each field and the flux potential term. We can see that the kinetic terms in τ are

much smaller, which means the dynamics are mostly in the complex structure moduli, z9.

In particular, the dynamics separates into three distinct parts: radial changes toward and

away from the conifold point occur in the beginning and the end of the transition, while

angular changes around the conifold occur in the middle.

This situation is very similar to [7–9]. The two vacua are connected by a monodromy

transformation, namely, a change of ∆θ ∼ 2π. We just need to determine the most eco-

nomical way to perform this transformation. Namely, minimizing the tension with 3 terms,

σ = σ1 + σm + σ2 , (6.1)

9This means that we would have got similar results if we had reduced the problem from 4D to 2D and

only focused on z. But it is not obvious that τ would essentially act as a spectator field, so we included it

in the analysis for completeness.

– 30 –



-0.4 -0.2 0.2 0.4

2

4

6

8

Figure 11: The action integrand (Lagrangian) broken up into contributions from five terms. The

thin-blue line is the potential term, the dashed-purple line is the kinetic term in r, the solid-purple

line is the kinetic term in θ. Kinetic terms in the two components of τ are colored red and green,

and barely contribute. Note that the potential dips below zero for the two vacua, this is an artifact

of our procedure for drilling these vacua in the near-conifold potential.

where σm is the tension for a monodromy transformation in the vicinity of a point in the

moduli space—i.e. keeping close to some geometrical configuration M∗ for the Calabi-Yau.

The first term σ1 comes from deforming the Calabi-Yau from vacuum 1 to the geometry

M∗, and σ2 for deforming M∗ back to vacuum 2. Near the vacua, σ1 and σ2 depend on

the deformation only to second order. However σm has nothing to do with the initial and

final vacua, so the leading order change will be linear. It is always more economical if σm
can be reduced by deforming away from the vacua.

For our case, σm is essentially the action integral in the θ direction,

σm =

∫ √
2V − 2V0

√
Kzz̄ r dθ , (6.2)

and σ1, σ2 are like integration in the r direction,

σi =

∫ √
2V − 2V0

√
Kzz̄ dr . (6.3)

We can see that since large deformations in the τ direction always increase tension, they

are highly suppressed. On the other hand reducing r decreases σm, so the path wants to

go near the conifold point.

The geometric picture is quite straight forward. The shrinking 3-cycle near the coni-

fold point is exactly the cycle which we cut and twist in the monodromy transformation.
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Figure 12: Top left is the vacuum configuration of the Calabi-Yau manifold. A monodromy

transformation (on the red cycle) contributes less to the action if the 3-cycle is small (top right),

and even less if it happens on the tip of the strongly warped conifold (bottom).

Physically the shrinking 3-cycle (with flux) cannot go to zero size, so eventually it becomes

strongly warped and the monodromy happens at the tip of the strongly warped conifold,

as shown in figure 12. Both shrinking and warping help to reduce σm.

We can also understand this process in the dual picture, where the flux is changed by

nucleating a charged brane instead of monodromy. The dual 7-form flux which is orthogonal

to the shrinking 3-cycle changes by nucleating a 5-brane. Three legs of this 5-brane will

wrap the shrinking cycle leaving two spatial directions for the (2+1)D domain wall in the

4D spacetime. As depicted in figure 13, the monodromy contribution is replaced by a

brane,

σ2−brane
4D = σ5−brane

10D (Vshrinking 3−cycle)(volume factor)(warp factor) . (6.4)

The volume factor corresponds to the dimensional reduction from the 10D theory string

frame to the 4D theory Einstein frame. It is a constant in our case since we have frozen

the Kahler moduli. It is also easy to see why the shrinking 3-cycle volume and the warp

factor help to reduce the effective 4D tension10.

Of course, it is very surprising to see that the balance between reducing σm and

increasing σ1 + σ2 happens at such an extreme geometry—a strongly warped Calabi-Yau.

In the next section we will provide a more quantitave analysis in this particular case. Here

we want to suggest a good intuition for general multi-field tunneling. The roughly equal

separate contributions shown in figure 11 suggest an equipartition among the three terms

σ1, σ2, and σm that make up the action, (6.1). This is quite natural assuming that the

three terms depend on a parameter in the same way (say polynomially or exponentially).

10One may expect us to match Eq. (6.4) and Eq. (6.2) to determine σ
5 brane
10D . We cannot do that because

in the monodromy picture the effective brane is smeared and cannot be assigned an exact location in the

warped throat.
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Figure 13: The extended horizontal direction represents 4D spacetime. The top tube comes with

the 3-cycle wrapped by the D5 brane, which wants to shrink. The bottom tube represent the other

3-cycle where the flux is changing, in which the brane is a point like object where the flux line can

end. Placing the charge on a locally warped region also reduces 4D tension.

What we have is essentially a generalized virial theorem telling us that the three terms

should have similar orders of magnitude. Knowing this in advance, we could use this to

estimate how big the deformation of the vacuum geometry is.

6.2 The shortest path

Our numerical results suggest a simple analytical argument for conifunneling. As noted

previously, although the axio-dilaton τ changes during tunneling, it contributes very little

to the action integral. Therefore the dynamics is similar to a 2D problem in just the

complex structure moduli z.

Starting from the simplest case with 2D canonical kinetic term in the polar coordinate.

L =
1

2

(
ṙ2 + r2θ̇2

)
− Vinverse(r, θ) . (6.5)

Let us first assume that the inverse potential Vinverse doesn’t have any special properties

near the conifold point (taken to be at the origin, r = 0). In this case, minimizing the action

is like finding the shortest path, which is of course a straight line. If there are multiple

sheets through branch cuts emanating from the conifold point along θ = 2πn there is an

additional constraint. When the angular separation between two points is larger than π,

a straight line will be obstructed by the branch cut. Therefore the maximum angular

separation is π if two vacua are to be connected by a tunneling path.

The strongly warped behavior near the conifold point in our mirror quintic case tells

us that we must modify the above with non-canonical kinetic terms

L =
K(r)

2

(
ṙ2 + r2θ̇2

)
− Vinverse(r, θ) . (6.6)

Assuming that the dominant behavior of the Kahler metric is of the form

K(r) = r2β , (6.7)
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we may change to a more natural set of variables, defining

r̃ =
rβ+1

β + 1
. (6.8)

This yields

L =
1

2

(
˙̃r2 + r̃2(β + 1)2θ̇2

)
− Ṽinverse(r̃, θ) , (6.9)

where

Ṽinverse(r̃, θ) = Vinverse

(
[(β + 1)r̃]1/(β+1), θ

)
. (6.10)

Ignoring the inverse potential, we can see that

∆θmax =
π

β + 1
. (6.11)

In our case β = −2/3, so ∆θmax = 3π. In addition, if the inverse potential has a peculiar

behavior near r = 0, it will modify this result. For example, a standard −1/r attractive

core will double the maximum angle. A repulsive core, which means Vinverse(0) is larger

than the conserved energy of the path, in general reduces the maximum angle. In our case,

lim
r→0

V = eKKττ |DτW |, (6.12)

has a positive global minimum in the τ space. This means that the inverse potential is at

most a finite attractive core, which has neglible effects. So ∆θmax = 3π, namely 3/2 of

monodromy transformation, is the best we can get. We have confirmed this with numerical

simulations.

Also, note that if we did not include the strong warping correction, we would have had

K(r) ∼ log r , V (r) ∼ log r , (6.13)

near r = 0. Since log r diverges slower than any rβ with β < 0, it should give us roughly

∆θmax = π. Also the uncorrected V has a logarithmic divergence, which corresponds to an

attractive core in the inverse potential. It is also weaker than, for example, Vinverse = −1/r.

As we saw in the simulation, there is no reason that a path can make ∆θ ∼ 2π.

From this point of view, conifunneling happens because the path needs the strong

warping correction to the Kahler metric in order to make a monodromy angle change of

2π. For our particular choice of fluxes F3 = −1, this is the minimum amount which F0 can

change. With |F3| > 1, one might expect to see several vacua on one sheet, which would

correspond to changing F0 by 1 several times. We have not seen such things in any of the

examples we have investigated11 . However, let us for the moment simply assume that there

are cases with multiple vacua for |F3| > 1. From our result, it is quite natural to make the

following 3 conjectures:

11Multiple vacua in a given sheet have been observed in other analyses [24], but τ is treated as a fixed

parameter. Our τ is dynamical and we know of no physical reason that requires multiple vacua on a single

sheet.
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• For angular changes less than π, which means |∆F0| < |F3|/2, tunneling is possible

regardless of warping and the path does not get close to the conifold point.

• For angular changes larger than π, which means |∆F0| > |F3|/2, we will see conifun-

neling.

• For angular changes larger than 3π, which means |∆F0| > 3|F3|/2, there will be no

tunneling path.

6.3 The BPS Path

Earlier work on similar string models focused on (near) BPS paths [25]. Here we will

demonstrate that in this model, there is no clear notion of being near-BPS. Conifunnel-

ing is the general behavior and the BPS path is a special case in good agreement with

conifunneling between two SUSY vacua.

The path we found numerically is a spatial planar interpolation between two vacua

that minimizes the action integral,

S = −
∫
d4x(Kzz̄∂µz∂

µz̄ +Kτ τ̄∂µτ∂
µτ̄ − V ) , (6.14)

Dropping the (2+1) planar integral, we get the tension of this transition domain wall,

σ =

∫
dx (Kzz̄ ż ˙̄z +Kτ τ̄ τ̇ ˙̄τ − V ) . (6.15)

Comparing to the similar problem in supergravity [25], we dropped the Kahler sector and

4D gravity. It is effectively the field theory limit of the same problem. In particular, we

can similarly define Z = eK/2W and rewrite the tension integral in the BPS form

σ = ∓2∆|Z|+
∫
dx

(
Kzz̄

∣∣ż ∓ 2Kzz̄∂z̄|Z|
∣∣2 +Kτ τ̄

∣∣τ̇ ∓ 2Kτ τ̄∂τ̄ |Z|
∣∣2
)
. (6.16)

It is straight forward to see that the tension is minimized by BPS equations,

ż = ±2Kzz̄∂z̄|Z| , (6.17)

τ̇ = ±2Kτ τ̄∂τ̄ |Z| . (6.18)

Note that these BPS equations are first order, so they only solve the equations of

motion (which are second order) with certain boundary conditions. The paths of BPS

equations are field lines of ∂|Z| and general vacua, local minima in V , are not necessarily

distinguished in |Z|, so there is no reason that two vacua sit on the same field line. In

general we cannot see criteria that ensure a tunneling path is necessarily near BPS.

If the vacua are supersymmetric, V = 0, they are critical points of |Z|. Now the BPS

equations agree with equation of motions with zero initial velocity, so potentially a BPS

path can be a tunneling path. But if this critical point is just a saddle point, then it does

not have BPS paths in all directions. We will need a local maximum or minimum of |Z|,
which is a focal point for BPS paths, so it covers all directions and matches one to one

with the possible tunneling paths.
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We have checked and found that all of the mirror quintic SUSY vacua listed in table 2

are local minima of |Z|12. Another property of a BPS path is that |Z| must be monotonic

along the path, so it cannot smoothly connect two local minima in |Z|. Instead, it must go

through at least one other special point, for example another critical point in |Z|. However,
that means that another supersymmetric vacuum would exist, and we do not observe this.

Another possibility is that the path goes through a region where |Z| = 0 and ∂|Z| is not

well-defined. However, |Z| = 0 implies that τ = −A/B, but the condition DτW = 0

requires τ = −A/B. Thus, if we go from a vacuum to a point where |Z| = 0, it must go

through Im(τ) = 0, where the string coupling diverges and is dynamically forbidden.

That leaves us with one choice, going through the conifold point where the Kahler

metric Kzz̄ diverges. Note that with this analysis alone, a BPS path would not be con-

vincing since going through such a singular point often implies complications. It is because

we found that there are paths near the conifold in general that it is reasonable to view

the BPS paths from either vacua joined at the conifold as a special limit for the tunneling

path.

Note that the lack of an obvious BPS path dovetails with studies of supersymmetric

branes probing the conifold [26]. In this work, the authors construct explicit supersym-

metric D3, D5, and D7 brane solutions wrapping various cycles in the singular conifold

geometry. In particular, they find supersymmetric solutions that represent D3 branes

wrapping the collapsing 3-cycle and a D5 wrapping the dual S2. However, they can only

construct stable, non-supersymmetric D5 branes that wrap the collapsing 3-cycle. This

provides further support for our interpretation of conifunneling as involving the nucleation

of a 5-brane wrapped on the collapsing 3-cycle.

7. Discussion

In this paper, we’ve undertaken the most detailed and refined study to date of particu-

lar loci in the Type IIB string landscape. We began by studying flux potentials arising

from various one-parameter Calabi-Yau compactifications. Using a topographical approach

similar to that of [10, 12], we established a general similarity between models that have a

single complex structure modulus within the unit circle in the complex moduli space with

coordinate z. Outside of the unit circle, the models show more unique behavior. Vacua

are more sporadic and involve more drastic changes to the fluxes across models. At least

for the first family of models whose α-parameters are all distinct, studies of flux vacuum

statistics in [18, 27, 28] demonstrate that the behavior of these models strongly depends

on their details near the Landau-Ginzburg point. This is likely to hold true for all of the

models we have examined.

After finding connected chains of SUSY vacua in various models, we turned our at-

tention to flux transitions between such vacua. The results of our numerical investigation

indicated that any initial guess profile fed into the relaxation algorithm is funneled into

the conifold region of the moduli space—what we have called “conifunneling”. The sta-

bility of these conifunneling solutions hinges critically on incorporating strong warping

12There might be deeper physical reason for this. We defer the study of that question to future work.
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corrections to the Kahler metric. Physically, these corrections become important near the

conifold point because a shrinking 3-cycle pierced through by flux leads to ever denser field

strength, which strongly distorts the surrounding Calabi-Yau geometry. Such corrections

would be completely washed out by taking the infinite volume limit of our geometry; we

work instead with a large but finite volume.

The usual intuition might have suggested that since these flux vacua are near each other

in the complex moduli space, it should be simple to construct an appropriately charged

brane whose nucleation brings one from one vacuum to another. Our findings suggest that

competing effects between the energy required to nucleate a brane wrapping the appropriate

cycles and the contraction or growth of these cycles are an essential aspect of the dynamics.

Thus, it seems clear that given an initial flux vacuum, finding the most probable tunneling

path is more subtle than simply looking at the separation in z-space and concluding that

a brane can connect two neighboring vacua (including vacua on the z-plane that are not

on a flux potential connected through LCS, conifold, or LG monodromies). Rather, such

a brane would still need to wrap appropriate cycles in order to absorb the appropriate

charges, and thus, we expect that the dynamics of these cycles will play a crucial role in

determining when such a brane can be nucleated. Because of this, we expect conifunneling

to be important in determining how tunneling occurs through a “discretuum” [1] of flux

vacua such as that envisioned by Bousso and Polchinski [2], and hence in the complexion

of the multiverse such processes generate.
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A. Properties of One-Parameter Models

Below we derive the general form for the monodromies about z = 0, 1, and ∞, and describe

the transformation to the symplectic basis (in which the intersection form is canonical)

which allows us to determine the intersection form in the basis of Meijer periods. First

recall that the four Calabi-Yau periods are solutions to the Picard-Fuchs equation. This

can be written as a differential equation of hypergeometric type:

[
δ4 − z

4∏

r=1

(δ + αr)

]
u = 0, (A.1)
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where δ = zd/dz, The fourteen models classified in [17] have α-parameters that satisfy the

relations αr = 1 − αq with r, q ∈ {1, 2, 3, 4} and r 6= q, giving two related pairs of the

α-parameters. We will use these relationships to simplify some of the results arrived at

below.

A.1 Finding monodromies and the symplectic basis

We can organize a complete set of solutions {Uj}3j=0 into a period vector U . The mon-

odromy around z = 0 is defined by the relation

U(e2πiz) = T [0]U(z). (A.2)

To facilitate the calculation of the monodromy matrix, the Picard-Fuchs equation can be

recast as a set of first-order differential equations which are solved by the fundamental

matrix Φij = δiUj. This matrix can be written in the form

Φ(z) = S(z)zR[0]. (A.3)

The monodromy around z = 0 is then simply

T [0] = e2πiR[0]⊤ . (A.4)

Under a general change of basis U =MŨ will transform the other matrices as follows:

Φ = Φ̃M⊤, S = S̃M⊤, R =M−⊤R̃M⊤, T =MT̃M−1. (A.5)

It’s useful to transform to a canonical basis in which Scan = S(0) = I. The matrix Rcan

turns out to have a particularly simple Jordan form in this basis,

Rcan[0] =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


 (A.6)

Given the period vector U in some basis, the fundamental matrix near z = 0 can be

written as

Φ(z) = Z(z)q(z), (A.7)

with the row-vector Z(z) = (1, log z, (log z)2, (log z)3) and q(z) a matrix related to the

solutions in a way that will be described more explicitly below in the case of the monodromy

around z = ∞. In the canonical basis, Ucan = Z(z)qcan(z). Given the transformations

above, it is not hard to show that M = q(0)⊤q−⊤can with U =MUcan. It is obvious that the

monodromy in the canonical basis is independent of the α parameters since Rcan[0] is. A

somewhat more surprising result is that T [0] remains independent of the α parameters in

the basis given by the Meijer functions

Uj(z) =
1

(2πi)j

∮

γ
φj(s, z)ds. (A.8)
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The integrand is

φj(s, z) =
(
(−1)j+1z

)s Γ(−s)j+1

Γ(s+ 1)3−j

∏

αr

Γ(s+ αr)
Dr

Γ(αr)Dr
, (A.9)

where Dr is the multiplicity parameter of αr and the product is over unique instances of

the α parameters. Since our interest is the monodromy around z = 0, we may close the

contour γ to the right, picking up residues at each non-negative integer s = n. For the

details of this particular calculation see [13] (note that our basis here differs by factors of

(2πi)−j). One finds that for all the models

T [0] =




1 0 0 0

−1 1 0 0

1 −1 1 0

0 0 −1 1


 . (A.10)

Similar remarks apply when we consider the monodromy around z = ∞. One major

difference is that Rcan[∞] is not the same as RJ [∞] where RJ [∞] is the Jordan form of the

matrix R[∞]. To go to the Jordan basis, we transform Ucan = P⊤UJ . The transformations

above imply that SJ(∞) = P and Rcan[∞] = P−1RJ [∞]P . The transformation P and

RJ [∞] are given explicitly below.

Since we are now interested in the monodromy around z = ∞ we close the contour to

the left, picking up residues at s = −αr − n for all non-negative integers n. It is useful to

rewrite φj(s, z) in a way that reflects the pole structure:

φj(s ∼ −αr−n, z) =
(

Γ(s+ αr + n+ 1)

(s+ αr + n)(s+ αr)(n)

)Dr Γ(−s)j+1
∏

αq 6=αr
Γ(s+ αq)

Γ(s+ 1)3−j
∏

αp
Γ(αp)Dp

(
(−1)j+1z

)s
,

(A.11)

Let ((−1)j+1)s = δj,odd + δj,evene
πis with δj,odd = 1 when j is odd and vanishing

otherwise (and similarly for δj,even). It is useful to split off the z-dependence from the rest

of the factors in the integrand as it is expressed above:

φj(s ∼ −αr − n, z) =
φn,r,j(s)

(s+ αr + n)Dr
zs (A.12)

The periods for |z| > 1 can be written as a sum over the residues of φj(s, z):

Uj(z) =
1

(2πi)j−1

∞∑

n=0

4∑

r=1

Ress=−αr−n (φj(s, z)) (A.13)

Expanding out the residue:

Uj(z) =
1

(2πi)j−1

∞∑

n=0

z−n
4∑

r=1

Dr−1∑

i=0

(
Dr − 1

i

)
φ
(Dr−1−i)
n,r,j (−n− αr)

(Dr − 1)!
z−αr log(z)i. (A.14)

The above can be re-expressed as

Uj(z) =

4∑

r=1

Zr(z)qrj(z) (A.15)
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or U⊤ = Zq, where Z(z) is a row vector that is specific to the situation. There are four

cases of interest:

Z(z) =





(z−α1 , z−α2 , z−α3 , z−α4), if all α’s differ

(z−α1 , z−α2 , z−β , z−β log z), if α3 = α4 = β

(z−α, z−α log z, z−β , z−β log z), if α1 = α2 = α and α3 = α4 = β

z−α(1, log z, (log z)2, (log z)3), if α1 = α2 = α3 = α4 = α.

(A.16)

Define the log-index vector

ρ =





(0, 0, 0, 0), if all α’s differ

(0, 0, 0, 1), if α3 = α4 = β

(0, 1, 0, 1), if α1 = α2 = α and α3 = α4 = β

(0, 1, 2, 3), if α1 = α2 = α3 = α4 = α.

(A.17)

and the multiplicity vector

D =





(1, 1, 1, 1), if all α’s differ

(1, 1, 2, 2), if α3 = α4 = β

(2, 2, 2, 2), if α1 = α2 = α and α3 = α4 = β

(4, 4, 4, 4), if α1 = α2 = α3 = α4 = α.

(A.18)

Then

qrj(z) =
1

(2πi)j−1

∞∑

n=0

z−n

(
Dr − 1

ρr

)
φ
(Dr−1−ρr)
n,r,j (−n− αr)

(Dr − 1)!
, (A.19)

note that r = 1, . . . , 4 while j = 0, . . . , 3. We are interested in the value around z = ∞.

The sum over integers reduces to

qrj =
1

(2πi)j−1

(
Dr − 1

ρr

)
φ
(Dr−1−ρr)
0,r,j (−αr)

(Dr − 1)!
. (A.20)

It is easy to compute zRJ [∞] given the RJ and the change of basis P discussed above:

RJ [∞] =




−α1
ρ2

ρ1+1 0 0

0 −α2
ρ3

ρ2+1 0

0 0 −α3
ρ4

ρ3+1

0 0 0 −α4


 , P =




1
α3
1

2+ρ1ρ2+4ρ2
2α

ρ2
1 α3

2

2+ρ2ρ3+4ρ3
2α

ρ3
2 α3

3

2+ρ3ρ4+4ρ4
2α

ρ4
3 α3

4
1
α2
1

1+ρ2
α
ρ2
1 α2

2

1+ρ3
α
ρ3
2 α2

3

1+ρ4
α
ρ4
3 α2

2
1
α1

1
α
ρ2
1 α2

1
α
ρ3
2 α3

1
α
ρ4
3 α4

1 1− ρ2
ρ1+1 1− ρ3

ρ2+1 1− ρ4
ρ3+1



,

(A.21)

recall that the αr need not be distinct in this expression. We have Φcan = ΦJP , which

implies that SJ = P . Using the fact that the period matrix can be written in the Jordan

basis as UJ(z)
⊤ = Z(z)qJ(z) and that (ΦJ)ij = δi(UJ)j allows us to find an expression

for qJ . In our original Meijer-basis U(z)⊤ = Z(z)q(z) so the two bases are related by the

transformation U =MUJ , M = q⊤q−⊤
J .
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The period matrix is then T [∞] = MTJ [∞]M−1. Remarkably, this can be expressed

in a universal way in terms of simple functions of the α parameters:

T [∞] =




m1 m2 m3 m4

−1 1 0 0

1 −1 1 0

0 0 −1 1


 , (A.22)

where

m2 = 4
(
sin(πα1)

2 + sin(πα2)
2
)
, m1 = 1−m2, (A.23)

m4 = 16 sin(πα1)
2 sin(πα2)

2, m3 = −m4. (A.24)

Showing this involves some arduous calculations best done using a computer algebra system

such as Mathematica.

The monodromy around the conifold point z = 1 follows from the fact that going

around a loop that encompasses all three special points results in a trivial transformation

of the periods. Therefore,

T [1] =

{
T [∞]T [0]−1, if Im z < 0

T [0]−1T [∞], if Im z > 0
(A.25)

In order to find the general intersection form in the Meijer-basis we pass to the sym-

plectic basis via Π(z) = LU(z). In this basis the intersection form takes on a natural

form:

Q =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


 . (A.26)

The requirement that Π†Q−1Π ∝ U †Q−1
U U implies that QU = L−1QL−† up to an overall

scaling factor.

Our goal now is to determine the change of basis L. First, we observe that in the

symplectic basis, the monodromy TΠ[1] has a simple form. The argument is as in [37]:

choose a pair of cycles A and B such that A corresponds to the S3 that degenerates at

the conifold point z = 1, and B is the cycle that intersects it. By transporting the cycles

around z = 1, A remains unambiguous, but B is only defined up to possible contributions

by A, that is B → B + nA for some integer n. The other pair of cycles are left unchanged

since they can be chosen to lie “far away” (i.e. outside the neighborhood) of A and B.

This implies that in the symplectic basis,

TΠ[1] =




1 0 0 0

0 1 0 0

0 0 1 0

n 0 0 1


 . (A.27)
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Examining T [1] in the Meijer basis shows that it can always almost be diagonalized, bring-

ing it to the above form with n = 1. The relation between the two forms of the monodromy

is TΠ[1] = LT [1]L−1, which constrains the choice of L. A further constraint is that all of the

monodromies should act as symplectic transformations in the symplectic basis. Therefore

for each monodromy T in the Meijer basis, TΠ = LTL−1 should preserve the intersection

form Q. We find that

L = κ




0 m2 0 m4

0 C −m4 0

0 −1 0 0

1 0 0 0


 (A.28)

satisfies these conditions, with κ and C undetermined constants. The general expression

for the intersection form of all the models in the Meijer basis is

QU =
1

κ2m2
4




0 0 0 m4

0 0 −m4 0

0 m4 0 −m2

−m4 0 m2 0


 . (A.29)

A.2 Summary of models, their monodromies and intersection forms

The models we are considering have been classified in [17] and are summarized in the table

below:

# Model α1 α2 α3 α4 m1 m2 m3 m4

1 P
4[5] 1/5 2/5 3/5 4/5 -4 5 -5 5

2 WP
2,1,1,1,1[6] 1/6 1/3 2/3 5/6 -3 4 -3 3

3 WP
4,1,1,1,1[8] 1/8 3/8 5/8 7/8 -3 4 -2 2

4 WP
5,2,1,1,1[10] 1/10 3/10 7/10 9/10 -2 3 -1 1

5 WP
2,1,1,1,1,1[3, 4] 1/4 1/3 2/3 3/4 -4 5 -6 6

6 WP
3,2,2,1,1,1[4, 6] 1/6 1/4 3/4 5/6 -2 3 -2 2

7 * 1/12 5/12 7/12 11/12 -3 4 -1 1

8 P
5[2, 4] 1/4 1/2 1/2 3/4 -5 6 -8 8

9 P
6[2, 2, 3] 1/3 1/2 1/2 2/3 -6 7 -12 12

10 WP
3,1,1,1,1,1[2, 6] 1/6 1/2 1/2 5/6 -4 5 -4 4

11 P
5[3, 3] 1/3 1/3 2/3 2/3 -5 6 -9 9

12 WP
2,2,1,1,1,1[4, 4] 1/4 1/4 3/4 3/4 -3 4 -4 4

13 WP
3,3,2,2,1,1[6, 6] 1/6 1/6 5/6 5/6 -1 2 -1 1

14 P
7[2, 2, 2, 2] 1/2 1/2 1/2 1/2 -7 8 -16 16

Table A.1: A summary of the various model parameters
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The monodromies around z = 0 and ∞ in the Meijer basis take the form

T [0] =




1 0 0 0

−1 1 0 0

1 −1 1 0

0 0 −1 1


 , T [∞] =




m1 m2 m3 m4

−1 1 0 0

1 −1 1 0

0 0 −1 1


 , T [1] =

{
T [∞]T [0]−1, if Im z < 0

T [0]−1T [∞], if Im z > 0

(A.30)

The intersection form in the Meijer basis and the transformation to the symplectic

basis are given by

QU =
1

κ2m2
4




0 0 0 m4

0 0 −m4 0

0 m4 0 −m2

−m4 0 m2 0


 , L = κ




0 m2 0 m4

0 C −m4 0

0 −1 0 0

1 0 0 0


 . (A.31)

B. A Brief Overview of Dimensional Reduction for Flux Compactifications

The low-energy effective description for type IIB string theory is

SIIB =
1

2κ210

∫
d10x

√−g
(
R− |∂τ |2

2τ2I
− |G(3)|2

12τI
−
F̃ 2
(5)

4 · 5!

)
+ SCS + Sloc, (B.1)

with

SCS =
1

8iκ210

∫
C(4) ∧G(3) ∧G(3)

τI
, (B.2)

and Sloc are contributions to the action from localized sources. We also have κ210 = (2π)7α′4,

and that the 5-form F̃(5) be self-dual. The NS-NS field strength H(3) and the R-R field

strength F(3) have been combined into G(3) = F(3) − τH(3). The action is invariant under

the SL(2,Z) transformations

τ → aτ + b

cτ + d
, G(3) →

G(3)

cτ + d
. (B.3)

The action is given in the 10D Einstein frame, which is related to the string frame by the

metric rescaling gEinstein = e−φ/2gString, where φ is the dilaton.

B.1 Conformal Calabi-Yau metric and the 4D Einstein frame

The metric for compactification on a warped Calabi-Yau manifold is

ds210 = e2A(y)ηµν dx
µdxν + e−2A(y)g̃ij dy

idyj . (B.4)

As discussed in [29], there is some subtlety involved in bringing this metric into the 4D

Einstein frame due to the fact that for non-trivial warping, the universal Kahler modulus,

ρI should actually be thought of as the zero-mode of the warp factor:

e−4A(y) = c+ e−4A0(y), (B.5)
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where c in the above is equivalent to ρI (but is kept notationally distinct in keeping with

the literature). As a result, a rescaling of the internal metric

g̃ij → λg̃ij (B.6)

must be done in conjunction with a transformation of the warp factor

e2A(y) → λe2A(y), (B.7)

which ends up preserving the original internal term in the metric (B.4), while producing a

factor of λ in the spacetime term. To go to the 4D Einstein frame choose

λ =
VCY

VW
=

VCY

V 0
W + cVCY

, (B.8)

where

VCY =

∫

M
d6y
√
g̃6, V 0

W =

∫

M
d6y
√
g̃6e

−4A0(y), (B.9)

so in the 4D Einstein frame we have

ds210 = e2A(y)VCY

VW
ηµν dx

µdxν + e−2A(y)g̃ij dy
idyj . (B.10)

Observe that in the limit where c≫ e−4A0 the above we have VW → cVCY and e−4A → c,

so the factor in front of the spacetime metric goes to the standard e−6u = c−3/2 while the

factor in front of the internal manifold term goes to c1/2. This shows that in the limit

of weak warping, the metric takes the standard 4D Einstein frame form for Calabi-Yau

compactification.

In the above, we have treated the zero-mode c and any other moduli as constant

parameters. Promoting the moduli to spacetime fields involves introducing compensators

and is rather technically involved. The analyses in [30,31] show that the Kahler potential

receives warping corrections. For example, the internal metric fluctuations corresponding

to both complex and Kahler moduli should have a Kahler metric of the form

GIJ =
1

4VW

∫

M
d6y
√
g̃6e

−4A(y)g̃ik g̃jlδI g̃ijδJ g̃kl, (B.11)

where the deformations δIgij are given by

δI g̃ij =
∂g̃ij
∂uI

+ δI g̃
∗
ij . (B.12)

The term ∂gij/∂u
I is the standard metric fluctuation associated with the modulus uI . The

second term on the RHS is a correction from warping effects and is defined by a set of

constraint equations

δIA =
1

8
g̃ijδI g̃ij , ∇̃k

(
δI g̃kj −

1

2
g̃kj g̃

mnδI g̃mn

)
= 4g̃ik∂iAδI g̃kj. (B.13)

For the analysis near the conifold, strong warping forces us to take into account the

above considerations. It turns out that the correct functional dependence on the complex
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structure modulus near the conifold can be derived through a somewhat less complicated

procedure than that of [31]. In [32], the authors assume a Kahler potential of the form

∫

M
d6ye−4A(y)Ω ∧ Ω, (B.14)

where Ω is the holomorphic 3-form of the unwarped Calabi-Yau. This simple form does

not follow from the general considerations of warping above, and indeed, in the specific

case of strong warping corrections to the conifold it does not produce the correct numerical

coefficients. However, it does capture the correct functional dependence on the complex

structure modulus which is sufficient for our purposes.

B.2 Corrections to the universal Kahler modulus

In [33], the authors considered the impact of warping on the universal Kahler modulus ρ

when it is promoted to a dynamical spacetime field. As noted above, ρ is not an independent

degree of freedom, its imaginary part is in fact identified with the zero-mode part of the

warp factor itself. The real part is associated with an axion related to the 4-form potential

C(4) =
1

2
a J̃ ∧ J̃ + · · · , (B.15)

where J̃ is the Kahler form associated with the metric g̃ij .

Surprisingly, the corrected Kahler potential for the universal Kahler modulus takes a

simple, natural form

KKahler = −3 log

(
2
VW
VCY

)
= −3 log

(
2c+ 2

V 0
W

VCY

)
= −3 log

(
−i(ρ− ρ̄) + 2

V 0
W

VCY

)
.

(B.16)

The above can be simplified by shifting the universal Kahler modulus, ρ→ ρ− i(V 0
W/VCY ).

The shifted expression has the usual form and is what we work with in the main text of

this paper.

C. Numerical Computation of the Flux Potential

Numerical computation of the Kahler potential K, Kahler metric Kzz̄, superpotential W ,

and the flux potential V require the use of Meijer functions that solve the fourth-order

Picard-Fuchs ODE. Mathematica has built-in Meijer functions, however these evaluate too

slowly for analytical computations. Instead, we generate a table of look-up values for these

functions on a grid running from (−5.01, 4.99) in both the Re(z) and Im(z) directions. The

grid spacing is 0.05 between each vertex.
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The numerical Meijer functions for our models are defined using the built-in ones as

follows

U0 = c MeijerG[{{1− α1, 1 − α2, 1 − α3, 1− α4}, {}}, {{0}, {0, 0, 0}},−z],
U1 =

c

2πi
MeijerG[{{1− α1, 1− α2, 1− α3, 1− α4}, {}}, {{0, 0}, {0, 0}}, z],

U−
2 =

c

(2πi)2
MeijerG[{{1− α1, 1− α2, 1− α3, 1− α4}, {}}, {{0, 0, 0}, {0}},−z],

U3 =
c

(2πi)3
MeijerG[{{1− α1, 1− α2, 1− α3, 1− α4}, {}}, {{0, 0, 0, 0}, {}}, z],

(C.1)

where the α-parameters are read off of table A.1 in appendix A.2 and the constant is given

by

c =
1

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
.

It is also useful to compute look-up tables for the derivatives of these functions:

∂zU0 = c MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0}, {−1,−1,−1}},−z],
∂zU1 = − c

2πi
MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0,−1}, {−1,−1}}, z],

∂zU
−
2 =

c

(2πi)2
MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0,−1,−1}, {−1}},−z],

∂zU3 = − c

(2πi)3
MeijerG[{{−α1,−α2,−α3,−α4}, {}}, {{0,−1,−1,−1}, {}}, z].

(C.2)

Initially, we arrange for the branch-cuts to lie along the real axis from (−∞, 0] and

[1,∞). To do this, we must define

U2 =

{
U−
2 , if Im(z) < 0,

U−
2 − U1, if Im(z) ≥ 0

(C.3)

and similarly for ∂zU2.

Let the look-up tables constructed from the above definitions be U0, U1, U2, U3,

dU0, dU1, dU2, and dU3. These arrays contain just the values of the Meijer functions at

the grid points. To form the interpolating function on the grid for say, U0 one must form

a table associating each entry in U0 to its corresponding grid point. One can then run

Mathematica’s Interpolation function on this table. Usually this is one of the final steps

after computing the table of values for a function of interest such as the flux potential.

The arrays for the canonical periods Πj are computed by using the change of basis L

given in appendix A.2 with κ = 1 and C = 3. This means that

P3 = m2U1+m4U3,

P2 = 3U1−m4U2,

P1 = −U1,
P0 = U0. (C.4)
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The computation of all the other functions of interest in terms of the canonical periods

now follow.

The final issue is that sometimes we must rotate the branch cut emanating from 0 to

−∞ in order to locate minima that sit too close to this branch cut. We do this by using

the monodromy transformation around the LCS point in the canonical basis. To define the

new periods with the rotated branch cut, we essentially define the new functions to be the

same as the old functions either above or below the new cut (depending on which way one

is rotating), while defining the value beyond the cut as given by the monodromy matrix

applied to the vector of periods.

D. A Toy Model for Two-Field Tunneling

D.1 General Formalism for Relaxation Method

As mentioned in section 4.1, the relaxation method allows us to find a path between two

vacua which minimizes the tension,

σ =

∫
dz

(
Gij

2

dφi
dz

dφj
dz

+ V − V1

)
. (D.1)

Such a path will solve the equations of motion,

d

dz

(
Gij

dφi
dz

)
=
∂V

∂φj
+

1

2

dGkl

dφj

dφk
dz

dφl
dz

, (D.2)

with boundary conditions

φi(z = −∞) → φ
(1)
i , φi(z = ∞) → φ

(2)
i . (D.3)

First we promote the equations of motion, Eq. (D.2), to (1 + 1) dimensional PDEs,

∂

∂t

(
Gij

∂φi
∂t

)
− ∂

∂z

(
Gij

∂φi
∂z

)
= − ∂V

∂φj
+

1

2

∂Gkl

∂φj

(
∂φk
∂t

∂φl
∂t

− ∂φk
∂z

∂φl
∂z

)
, (D.4)

which has conservation of energy (up to boundary terms)

Gij

2

(
∂φi
∂t

∂φj
∂t

+
∂φi
∂z

∂φj
∂z

)
+ V = E = const. (D.5)

Note that a static solution of these PDEs will solve the equations of motion. So the

trick is to add a damping term,

∂

∂t

(
Gij

∂φi
∂t

)
− ∂

∂z

(
Gij

∂φi
∂z

)
+λ(t)

∂φj
∂t

= − ∂V

∂φj
+
1

2

∂Gkl

∂φj

(
∂φk
∂t

∂φl
∂t

− ∂φk
∂z

∂φl
∂z

)
. (D.6)

With λ(t) > 0, as long as the solution is not static, the total energy will keep decreasing

until it reaches a minima.
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Figure 14: The global path connecting two isolated vacua, showing in the inverse potential. Here

wx = wy = 0.5, x1 = 0, x2 = 10, y0 = −1, Λ = 0 and k = 1 which is irrelevant.

D.2 Application to a Two Fields Model

Here we apply the relaxation method to a two field problem with standard kinetic terms.

ẍ =
∂V

∂x
, ÿ =

∂V

∂y
. (D.7)

The potential is designed to have both a run away direction in “−y”, and a valley connecting

two degenerate vacua at (x1, y0), (x2, y0) with vacuum energy Λ.

V (x, y) = Vglobal(y)

(
1− exp

[
−
(
y − yvalley(x)

wy

)2
]
[1− Vlocal(x)]

)
, (D.8)

Vglobal(y) = exp [y/2] ,

Vlocal(x) = Λe−y0/2 + (1− Λe−y0/2) tanh2 [(x− x1)(x− x2)/(6wx)] ,

yvalley(x) = y0 + k sin[π(x− x1)/(x2 − x1)] .

Basically, we drill two holes with widths controlled by wx, wy, and also a valley along

yvalley(x), controlled by 1 parameter, k.

Our toy model shows that

• A complete valley is not necessary nor sufficient to exibit a tunneling path,13

• A global path has a simple analytical description.

First we study the global path by choosing wx = wy ≪ |x1 − x2|, such that we have

two sharp, isolated vacua with no valley between them, as in figure 14.

A global path is the trajectory of a unit mass particle of total energy −Λ on the

inverse potential −V (x, y) ∼ −Vslope(y). It is as simple as a projectile motion, that vx

13In [12], the authors proposed that a tunneling path will pass through a saddle point between the vacua.

That claim is similar but slightly weaker than a valley-following path, since a valley guarantees a saddle

point but not the other way around. Our examples here shows that they are equally wrong. Their claim

is based on tuning the strength of gravity and assuming that a weak gravitational, Coleman-deLuccia

instanton (which has a tunneling path) must continuously deform into a Hawking-Moss instanton [34]

(which just sits on the saddle point) in strong gravity. It is already incorrect even with only one field, as the

Coleman-deLuccia instanton can emerge from a different branch and is not connected to the Hawking-Moss

instanton by continuous deformation [35].
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stays constant while y decreases to ym and comes back.

vxδt = |x1 − x2| ,
ym = 2 ln

(
v2x/2 + Λ

)
,

δt = 2

∫ y0

ym

dy√
2ey/2 − 2Λ− v2x

,

Combining these equations, we get

|x1 − x2| =
8vx√
2Λ + v2x

tan−1

√
2ey0/2 − 2Λ− v2x√

2Λ + v2x
. (D.9)

From (D.9), we can see important properties of the global path. For Λ > 0, there is a

maximum seperation |x1−x2| < dM , beyond which no path can be found. For separations

within this range, there are two paths just like the usual projectile motion, a high path

(smaller vx) and a low path (bigger vx). According to the tension of a path given by

σ(vx) =

∫
(v2x + v2y)dτ

= 8

(√
2e−y0/2 − 2Λ− v2x −

2Λ√
2Λ + v2x

tan−1

√
2e−y0/2 − 2Λ− v2x√

2Λ + v2x

)
, (D.10)

the low path has smaller tension, therefore is the solution we are looking for.

For Λ = 0, the maximum separation occurs when vx → 0. This value dM = 4π can be

taken as the absolute maximum for all dS and Minkowski vacua. For Λ < 0, there is no

maximum separation.

Now we turn our attention to local paths, namely the path which follows the valley.

First we should increase wx so that the valley is more prominent. Also, we should choose

a reasonably large k > 0, since negative k makes it hard to distinguish the local path from

the global path. Then we can use the relaxation method with initial condition set by

yinitial(x) = ayvalley(x) , (D.11)

where a is a tunable parameter which should scan through a wide range of values if we are

doing a general path search14. Obviously, if we want to relax into the local path, reasonable

choices will have a ∼ 1. In our first example, figure 15, the valley is quite obvious and of

course there is a saddle point right in the middle, we find both a local path and a global

path.

The numerical data of the final paths allows us to estimate their tension. In this

example they are quite close and we can tune the parameters to make either one smaller.

In the next two examples, we adjust the valley and repeat the same process. We

can show that when there is no saddle point, there can still be a local path (figure 16).

Alternatively, in figure 17 there is a saddle point but no local path. Here in particular we

increase the initial damping factor and look carefully for initial conditions near the saddle

point, but no paths relax there.
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(a) (b) (c)

Figure 15: A potential with an obvious valley. Here wy = 0.5, wx = 4, x1 = 0, x2 = 10, y0 = −1,

Λ = 0, and k = 1. With two different initial conditions, a = 0.3 relaxes to the global path, and

a = 0.5 relaxes to the local path.

(a) (b) (c)

Figure 16: A local path without a saddle point. Here wy = 1, wx = 4, x1 = 0, x2 = 10, y0 = −1,

Λ = 0, and k = 1. With two different initial conditions, a = 0.1 relaxes to the global path, and

a = 0.2 relaxes to the local path.

(a) (b) (c)

Figure 17: A saddle point without a local path. Here wy = 1.5, wx = 2, x1 = 0, x2 = 5, y0 = −1,

Λ = 0, and k = 4. We tried several a ∼ 1 value in the neighborhood of the saddle point, and here

shows a = 0.95 which closely tracks the valley. All of them left the valley and relaxed into the

global path.

14In practice, the initial condition should be both (x, y) as functions of z between zleft and zright. Here

we choose x to be linear in z. One can choose a different initial parametrization but it will not significantly

affect the result. The path y(x) is more important.
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It should not be surprising that the existence of a local path is not necessarily related

to a saddle point (or a valley). A path through the saddle point in general sees smaller

values of the potential, but that is not the only factor. While minimizing the action, we

also need to consider the path length, which can be a comparable effect. We can only hope

that the local paths work in models where the path length does not vary too much. Even

so, we encourage people to always check whether such a path is real using methods such

as numerical relaxation.

E. Warping and the Conifold

A more careful analysis of the near conifold behavior of the flux potential would include

the effects of warping due to fluxes—effects that are localized at the tip of the cone in the

Calabi-Yau geometry when its moduli approach a conifold point. What follows is a slightly

generalized version of the singular conifold calculations found in [36].

E.1 Geometry of the singular conifold

The singular conifold has a Kahler metric given by

ds2(6) = dρ2 + ρ2dΣ2, (E.1)

where

dΣ2 =
1

9

(
2dβ +

2∑

i=1

cos θidφi

)2

+
1

6

2∑

i=1

(
dθ2i + sin2 θidφ

2
i

)
. (E.2)

is the metric on the base of the conifold, T 1,1. The base has the topology S3 × S2. The

coordinates θi go between 0, π, while the φi and β go between 0, 2π, thus these coordinates

parametrize two S2’s. The manifold T 1,1 can thus be thought of as a fiber bundle over

S2 × S2 with S1 fibers. Alternatively, one can look at T 1,1 as a fiber bundle over S3 with

S2 fibers. To trace out one of the S2 fibers, hold β fixed (say at β = 0), and then set

θ1 = θ2 and φ1 = −φ2. The base is given by taking θ2 = φ2 = 0.

It’s helpful to introduce the following two bases of one-forms:

e5 = 2dβ + cos θ1dφ1 + cos θ2dφ2,

e1 + ie2 = i (dθ1 + i sin θ1dφ1) ,

e3 + ie4 = ie2iβ (dθ2 − i sin θ2dφ2) , (E.3)

and

g1,3 =
e1 ∓ e3√

2
, g2,4 =

e2 ∓ e4√
2

, g5 = e5. (E.4)

In this last basis the metric on T 1,1 is

dΣ2 =
1

9
(g5)2 +

1

6

4∑

i=1

(gi)2. (E.5)
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The volume of T 1,1 is given by the integral
∫

T 1,1

1

62
g1 ∧ g2 ∧ g3 ∧ g4 ∧ 1

3
g5 =

1

33 · 22
∫

T 1,1

e1 ∧ · · · ∧ e5. (E.6)

The integral over T 1,1 above becomes

Vol(T 1,1) =
2

22 · 33
(∫ 2π

0
dφ

)3(∫ π

0
d(cos θ)

)2

=
2 · (2π)3 · 22

22 · 33 =
16

27
π3. (E.7)

It is useful to define the forms

ω1i = 2dβ + cos θidφi, ω12 ∧ ω11 = 2cos θ1dβ ∧ dφ1 − 2 cos θ2dβ ∧ dφ2 − cos θ1 cos θ2dφ1 ∧ dφ2
ω2 =

1

2

(
g1 ∧ g2 + g3 ∧ g4

)
=

1

2

(
e1 ∧ e2 + e3 ∧ e4

)
=

1

2
(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2) ,

ω3 = ω2 ∧ g5 =
1

2
d (ω12 ∧ ω11) (E.8)

Given the relationship between ω3 and the ω1i’s one finds that

ω3 ∧ ω12 ∧ ω11 = 0, (E.9)

since 0 = d(ω12 ∧ ω11)
2 = 2ω3 ∧ ω12 ∧ ω11 + 2ω12 ∧ ω11 ∧ ω3. We also have

ω2 ∧ ω12 ∧ ω11 = cos θ2dβ ∧ d(cos θ1)∧ dφ1 ∧ dφ2 − cos θ1dβ ∧ d(cos θ2)∧ dφ1 ∧ dφ2 (E.10)

The forms ω2 and ω3 satisfy
∫

S2

ω2 = 4π,

∫

S3

ω3 = 8π2 (E.11)

for the S2 fibers and the S3 base of T 1,1.

The 6D Hodge dual of ω3 (denoted by a ⋆6ω3 to keep it distinct from the 10D duality

operator) is

⋆6ω3 =
1

2

(
⋆6
(
g1 ∧ g2 ∧ g5

)
+ ⋆6

(
g3 ∧ g4 ∧ g5

))
=

3

ρ
dρ ∧ ω2, (E.12)

which can be easily seen by defining the forms λi = ρgi/
√
6, λ5 = ρg5/3, and λ6 = dρ.

Clearly, ⋆6ω3 can also be expressed as an exact form

⋆6ω3 = dω̃2, ω̃2 = 3 ln ρ · ω2. (E.13)

Given a 3-form of the form

Aω3 + B ⋆6 ω3, (E.14)

using (⋆6)
2 = −1, the condition for imaginary self-duality is that B = −iA. The 3-form is

exact, with a potential:
1

2
Aω12 ∧ ω11 + Bω̃2. (E.15)

So for an imaginary self-dual 3-form, we have the form for the 3-form and its 2-form

potential:

A(1− i⋆6)ω3, A
(
1

2
ω12 ∧ ω11 − iω̃2

)
. (E.16)
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E.2 Branes and fluxes on the singular conifold

We imagine ND3 D3-branes filling the large spatial dimensions. These branes are pointlike

in the 6D conifold geometry and they sit at the tip of the conifold. These D3’s act as

magnetic sources for type IIB F(5) flux through the T 1,1 base of the conifold:

1

(4π2α′)2

∫

T 1,1

F(5) = ND3. (E.17)

This means that we can write

F(5) =
πα′2

2
ND3 ω2 ∧ ω3 = 27πα′2ND3Vol(T 1,1), (E.18)

where Vol(T 1,1) is the volume form on T 1,1.

In addition to the D3-branes, we consider N D5-branes wrapped around S2’s in T 1,1.

Geometrically, the dual to the S2 fiber in T 1,1 is the S3 base, and thus, these D5’s act as

sources of magnetic R-R flux on the S3:

1

4π2α′

∫

S3

F(3) = N. (E.19)

This suggests that F(3) takes the form

F(3) =
1

2
Nω3 + f ⋆6 ω3, (E.20)

where f is to be determined.

We also allow for some integer amount of NS-NS flux through the S3:

1

4π2α′

∫

S3

H(3) =M. (E.21)

In fact, we will always choose this to vanish (which is general since type IIB theory has an

SL(2,Z) symmetry that allows us to fix such a condition). For the sake of clarity, we will

work with M left arbitrary for now. Therefore, we can write

H(3) =
1

2
Mω3 + h ⋆6 ω3, (E.22)

with h to be determined.

In type IIB supergravity, the R-R 3-form field strength F(3) = dC(2) and the NS-NS

3-form field strength H(3) = dB(2) are naturally combined into the imaginary self-dual

3-form

G(3) = F(3) − τH(3) =
(
F(3) − τRH(3)

)
− iτIH(3), (E.23)

where τ = C(0) + ie−φ is the axio-dilaton and gs = eφ is the string coupling. Since G(3) is

imaginary self-dual, it follows from before that it can be expressed in the form

Aω3 − iA ⋆6 ω3. (E.24)
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This implies that
1

2
(N − τM) = i(f − τ h), (E.25)

or taking real and imaginary parts

1

2
(N − τRM) = τIh, −1

2
τIM = f − τRh. (E.26)

So,

h =
1

2τI
(N − τRM), f =

1

2τI
(NτR − |τ |2M). (E.27)

So we have

F(3) =
1

2
N ω3 +

1

2τI
(NτR − |τ |2M) ⋆6 ω3, H(3) =

1

2
M ω3 +

1

2τI
(N − τRM) ⋆6 ω3. (E.28)

As mentioned above, we can always use SL(2,Z) symmetry to set M = 0, which simplifies

the above expression

F(3) =
1

2
N ω3 +

τR
2τI

N ⋆6 ω3, H(3) =
1

2τI
N ⋆6 ω3. (E.29)

Note that in much of the literature (including the famous paper by Klebanov and Strassler),

τR is taken to vanish. The above reproduces those results.

The type IIB self-dual 5-form satisfies the Bianchi identity

dF̃(5) = 2κ2T3ρ3 +H(3) ∧ F(3), (E.30)

where κ2 is the 10D Planck scale, T3 is the tension of D3-branes, and ρ3 is the D3-charge

density from localized sources. We know that

H(3) ∧ F(3) =
N2

4τI
⋆6 ω3 ∧ ω3 = 27 · 3N

2

2τI

dρ

ρ
∧Vol(T 1,1). (E.31)

Define

F(5) = 27πα′2Neff (ρ)Vol(T 1,1), (E.32)

where

Neff (ρ) = ND3 +
3N2

2πτI
ln

ρ

ρ0
, (E.33)

where ρ0 is a cut-off distance at which we choose to truncate the singular conifold geometry,

which gives the hard-wall approximation to the deformed conifold in which the singularity

at the tip is replaced by an S3 of some minimal size.

The 10D self-dual 5-form field strength is then

F̃(5) = (1 + ⋆)F(5). (E.34)

– 54 –



E.3 10D warped geometry and the warp factor

The metric is taken to be

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gij(y)dy

idyj , (E.35)

where gij is the singular conifold metric and e−4A(y) is the warp factor. Recalling that the

conifold metric can be written as

ds26 = dρ2 + ρ2dΣ2 =

6∑

i=1

(λi)
2, λ1,...,4 =

g1,...,4√
6
ρ, λ5 =

g5

3
ρ, λ6 = dρ, (E.36)

we can define the 10D vielbeins

Eµ = eAdxµ, F i = e−Aλi. (E.37)

Now,

⋆(F 1 ∧ · · · ∧ F 5) = e−5Aρ5 ⋆Vol(T 1,1) = F 6 ∧ E0 ∧ · · · ∧ E3 = e3Adρ ∧ dx0 ∧ · · · ∧ dx3.

So,

⋆Vol(T 1,1) =
e8A

ρ5
dρ ∧ dx0 ∧ · · · ∧ dx3. (E.38)

Furthermore, we know from 4D Poincaré invariance that

⋆F(5) = dα(y) ∧ dx1 ∧ · · · ∧ dx3. (E.39)

Thus,

dα = 27πα′2Neff (ρ)e
8Aρ−5dρ. (E.40)

The BPS constraints require that α = e4A. Thus

dα

α2
= 27πα′2Neff (ρ) dρ

ρ5
. (E.41)

Integrating both sides yields

e−4A = c+
27πα′2

4ρ4

(
ND3

τI
+

3N2 ln(ρ/ρ0)

2πτ2I
+

3N2

8πτ2I

)
, (E.42)

where c is a constant of integration. The constant actually plays a crucial role in under-

standing the dynamics of the universal Kahler modulus in warped flux compactifications

since it represents the zero-mode of the warping and is, in fact, identified with the universal

Kahler modulus field.

Note that a factor of τ−1
I crops up in the final expression after integrating. This is due

to a shift from the 10D string frame metric to the 10D Einstein frame metric.
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E.4 The functional form of warping corrections to the Kahler metric

Following [29,32], we assume that the Kahler potential takes the form

Kcs = − log

(
i

∫

M
e−4AΩ ∧ Ω

)
. (E.43)

In general this is not the complete Kahler potential and additional corrections are needed

(see [30, 31]), however it was shown in [31] that the functional behavior of the warp cor-

rections to the Kahler metric is the same in the case of the conifold whether or not one

considers the additional corrections.

Splitting the integral into the bulk and conifold portions of the Calabi-Yau manifold

gives

Kcs = − log

(
ic

∫

Mbulk

Ω ∧ Ω+ i

∫

Mconifold

e−4AΩ ∧ Ω

)
, (E.44)

where we have used the fact that in the bulk contributions from e−4A0 will be negligible

compared to c, taken to be large. Defining

Kbulk = − log

(
ic

∫

Mbulk

Ω ∧ Ω

)
, (E.45)

since the volume of the bulk region is taken to be much larger than that of the conifold

region, we can write the above as

Kcs ≈ Kbulk + ieKbulk

∫

Mconifold

e−4AΩ ∧ Ω+ · · · . (E.46)

The Kahler metric near the conifold with the warping effects will thus be

(Kconifold)ξξ̄ ≈ ieKbulk

∫

Mconifold

e−4Aχ ∧ χ, (E.47)

where χ is the (2,1)-form that corresponds to complex deformations of the conifold

χ =
1

8π2
(ω3 − i ⋆6 ω3) =

1

8π2

(
ω3 − 3i

dρ

ρ
∧ ω2

)
. (E.48)

We have

χ ∧ χ =
i

32π4
ω3 ∧ ⋆6ω3 = − 81i

16π4
dρ

ρ
∧Vol(T 1,1). (E.49)

In the integral for the near conifold Kahler metric (E.47), the warp factor will only depend

on r, so the volume integration over T 1,1 simply gives a factor of 16π3/27. The integral we

wish to calculate is then
3

π
eKbulk

∫ Λ0

|ξ|1/3

dρ

ρ
e−4A(r). (E.50)

Plugging in the result for the warp factor (E.42), we find the strong warping correction to

the standard result. Ignoring the details of the coefficients, we have

(Kconifold)ξξ̄ ∼ c1 log
Λ3
0

|ξ| +
c2

|ξ|4/3 , (E.51)
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where we have substituted ρ0 = |ξ|1/3 as the hard-wall cut-off of the singular conifold and

we assume that |ξ| is small compared to the long-distance cut-off Λ3
0. The ratio of the

coefficients c1/c2 is going to be of order c, which is taken to be large, but not strictly

infinite. This means that strong warping will have an impact for small enough |ξ|. For

the purposes of our simulations, we consider the coefficient in front of the warp correction

term to be an adjustable parameter that should be set at some small order of magnitude.

Note that in our numerical analysis of near conifold tunneling behavior, we have ignored

the additional τI dependence that comes from the warp factor. Including this effect will

likely modify the τ -field profile a little, but dramatically complicates the computation.

F. Near-conifold Potential and Numerical Data

In general, a conifold locus in the moduli space represents Calabi-Yaus that develop various

singular points due to the collapse of certain cycles. In the one-parameter examples, there

is a single conifold point and a single cycle that degenerates while the periods of the other

cycles become constant [37].

Due to the paired intersections of cycles in a Calabi-Yau, the collapsing cycle’s partner

develops interesting behavior in the moduli space (despite going to a constant at the conifold

point). Call the collapsing cycle A and the intersecting cycle B. Making a closed loop in

moduli space around the conifold point, one finds that there is an ambiguity involved in

determining what happens to the B-cycle. Since the intersection of A with itself is zero,

going around the conifold point can lead to some integer multiple of an A -cycle adding

on to the B-cycle. From the perspective of the periods, a loop around the conifold point

sends ΠB → ΠB +ΠA . This implies that

ΠA = ξ + πA (ξ), ΠB =
ξ

2πi
log

ξ

Λ3
0

+ πB(ξ), (F.1)

where the functions πA and πB are O(ξ2) and O(1), respectively. The monodromy of the

B-cycle period is captured by the behavior of log in the expression above. The constant

Λ3
0 arises from cutting off the conifold geometry and gluing it into the bulk Calabi-Yau at

r ∼ Λ0 where r is the radial coordinate for the singular conifold.

Given the above expressions, we can work out the behavior of the Kahler potential,

Kahler metric, superpotential, and the flux potential in the near-conifold limit. We will

first do this while ignoring corrections from strong warping.

F.1 The Kahler potential and its derivatives

The complex structure Kahler potential for the one-parameter models is

Kcs = − log
(
i
(
Π3Π0 −Π3Π0 +Π1Π2 −Π1Π2

))
. (F.2)

In our notation the collapsing cycle is given by ΠA = Π3, and its intersecting partner is

ΠB = Π0. Plugging in the near-conifold behavior of these cycles and sweeping up all of

the O(1) dependence into a function k(ξ) gives

Kcs = log

( |ξ|2
2π

log
Λ6
0

|ξ|2 + k

)
→ − log k, (F.3)

– 57 –



where the expression after the arrow indicates the limit of the Kahler potential when we

neglect terms of order O(ξ).

The derivative is then

Kξ = eKcs

(
ξ̄

2π

(
log

Λ6
0

|ξ|2 − 1

)
− kξ

)
→ −kξ

k
. (F.4)

And the Kahler metric is

Kξξ̄ = |Kξ|2 + eKcs

(
1

2π

(
log

Λ6
0

|ξ|2 − 2

)
− kξξ̄

)
→ 1

2πk
log

Λ6
0

|ξ|2 + κ(ξ), (F.5)

where κ(ξ) ∼ O(1). The near conifold Kahler metric possesses a logarithmic singularity at

the conifold point.

In order to include the effects of strong warping for very small |ξ|, we modify the

expression for the Kahler metric above by introducing the warp correction term

Kξξ̄ ≈
1

2πk
log

Λ6
0

|ξ|2 +
K1

k
+

C1

k|ξ|4/3 , (F.6)

where C1 is taken to be very small, reflecting that we are working with a large (but finite)

volume Calabi-Yau manifold. Note also that we have replaced κ = K1/k in the above as

it is more convenient to work with in the final expression for the flux potential.

F.2 The superpotential and its derivatives

The superpotential is as above

W = F · Π− τH · Π = A+ τB. (F.7)

Recall that we can use the SL(2,Z) invariance of type IIB superstrings to ensure that H3

always vanishes. This means that while A has non-trivial monodromy near the conifold

point, B does not since the flux multiplying Π0 is set to zero.

The near-conifold behavior of these functions is easily computed

A =
FA ξ

2πi
log

ξ

Λ3
0

+ a(ξ) → a(ξ), B = b(ξ), (F.8)

where a and b are O(1) and depend on the choice of the fluxes associated to the other

cycles (including the B-cycle). We also have

Aξ =
FA

2πi

(
log

ξ

Λ3
0

+ 1

)
+ aξ →

FA

2πi
log

ξ

Λ3
0

. (F.9)

Thus, the derivatives DξW and DτW of the superpotential take the following form near

the conifold

DξW ≈ FA

2πi
log

ξ

Λ3
0

+A1 − τB1, (F.10)

and

DτW ≈
√
k(A2 + τ̄B2). (F.11)
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F.3 The flux potential near the conifold

The leading behavior of the flux potential in ξ is determined by the behavior of A in the

superpotential above. Recall that the flux potential is given by

V =
eKcs

16τIρ3I

(
Kξξ̄|DξW |2 +Kτ τ̄ |DτW |2

)
. (F.12)

Inserting the expressions for the Kahler potential, metric, and superpotential near the

conifold, we have

V =
1

16τIρ
3
I

((
1

2π
log

Λ6
0

|ξ|2 +K1 +
C1

|ξ|4/3
)−1 ∣∣∣∣

FA

2πi
log ξ +A1 − τB1

∣∣∣∣
2

+ |A2 + τ̄B2|2
)
,

(F.13)

where C1 is a small constant (it’s order of magnitude mainly reflecting the large volume of

the compactification manifold) and Λ0 the cut-off characterizing where the singular conifold

is glued into the bulk Calabi-Yau geometry.

F.4 Mirror quintic near-conifold numerical data

Our numerical simulations have been carried out for vacua arising from flux compactifi-

cation on the mirror quintic. We collect here some data to ease the replication of our

results.

Given the fluxes F = (3,−6,−9,−1) and H = (−1, 0,−7, 0), the parameters in the

near-conifold flux potential (F.13) are

K1 = 0.524211,

A1 = 13.1691 + 17.3632 i,

B1 = 0.209511 + 0.000277995 i,

A2 = −9.55217 + 7.75481 i,

B2 = −2.26182 i.

The choice of F flux implies that FA ≡ F3 = −1.

The mirror quintic period data near the conifold is approximated as follows: for the

period functions that are regular near the conifold, we used Mathematica to compute them

in terms of Meijer G functions and find their expansions to first order around the conifold

point. The period Π0 picks up a monodromy on sending ξ → e2πiξ. We captured this

behavior, the O(1) and O(z) behavior by fitting a function of the appropriate form to a

numerically generated period function. The fit is good for |ξ| ∼ 0.04 for Λ3
0 ∼ 1. Note

that the variable z is set up so that z = 1 is the conifold point, z = 0 is called the

large-complex-structure (LCS) point.

Π3 → ξ ≡ −0.355878 (z − 1)i,

Π2 → 6.19501 − 7.11466 i − (2.33032 + 2.85683 i)ξ,

Π1 → 1.29357 i + 0.423645 ξ,

Π0 → ξ

2πi
log(−iξ) + 1.07128 − 0.0630147 i ξ.
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