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1 Introduction

One of the few firm predictions of string or M-theory is the existence of extra
spatial dimensions. The conventional scenario is that these dimensions are
unobservably small today. Understanding how the universe got into such an
asymmetric state is necessarily a problem for cosmology. One intriguing pos-
sibility is that extended objects play a vital role in explaining the asymmetry.
This is the idea behind brane gas cosmology [1, 2, 3, 4, 5, 6].

Brane gas cosmology rests on the assumption that in string or M-theory
branes will be present as one component of a heat bath that fills the early
universe. In a universe with compact directions that can be wrapped by
branes, the dynamics of the wrapped branes may play a significant role in the
overall evolution of the universe. In particular one can explore analogues of
the Brandenberger-Vafa scenario, which proposes that the three large spatial
dimensions we see at present arose from a thermal fluctuation in a primordial
gas of winding strings [7, 8, 9, 10, 11].

In a recent paper we considered the late time behavior of a brane gas
model, arising from M-theory compactified on T 10, in which the universe
contains a supergravity gas and 2-branes wrapped on the various cycles of
the torus [12]. We could safely ignore 5-branes, which are also part of the
M-theory spectrum, since they will quickly intersect and annihilate in ten
spatial dimensions. The key conclusion of [12] was that the directions which
were not wrapped by 2-branes expanded faster than those that were, and
that the overall expansion rate of the wrapped and unwrapped subspaces
depended only on their dimensionality. In the present paper we turn our
attention to the early time behavior of this model, and include two crucial
ingredients which are unimportant at late times: the fluctuations on the
branes themselves, and the annihilation and creation of branes out of the
thermal bath provided by the supergravity gas.

This paper is laid out as follows. In the following section we derive the
analogs of the Friedmann equations for this cosmology. Section 3 examines
the statistical mechanics of a universe which contains 2-branes and radiation
(the supergravity gas), and presents a simple and, to our knowledge, novel
derivation of a limiting (Hagedorn) temperature for the 2-brane gas. In sec-
tion 4 we investigate the cosmology of the “Hagedorn phase,” showing that
in this phase the negative pressure of the brane tension cancels the positive
pressure of the brane fluctuations, so the universe expands almost as if it were
filled with pressureless dust. In section 5 we investigate the cross-section for
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brane-antibrane annihilation and write down Boltzmann equations governing
the number density of the different brane wrapping modes. We show that the
effective interaction rate drops to zero at a finite time, producing a freeze-

out analogous to that leading to a relic abundance of dark matter species in
conventional cosmology, so that some directions can remain wrapped at late
times. In Section 6 we numerically evolve the combined Einstein-Boltzmann
equations for a variety of different initial conditions, and show that the num-
ber of directions which are not wrapped by branes depends on the initial
volume of the universe. Section 7 describes holographic constraints on the
initial conditions for the universe, and we conclude in Section 8. Throughout
this paper we scale the M-theory Planck length to unity, so that Newton’s
constant is given by 16πG = (2π)8 and the 2-brane tension is T2 = 1/(2π)2.

2 Gravitational dynamics

We consider a universe whose spatial topology is a d-dimensional torus T d.
The case of interest for M-theory is d = 10, but we frequently write d as a
parameter, to clarify the origin of the numerical constants appearing in our
equations. The universe is thus spatially flat but has finite volume, a fact
which will be of crucial importance in what follows. We use the metric

ds2 = −dt2 +
d
∑

i=1

e2λi(t)dx2
i 0 ≤ xi ≤ 1 (1)

and add matter in two forms: M2-branes and a supergravity gas. The stress
tensor for the massless supergravity gas is

T µ
ν = diag(−ρS, pS, . . . , pS) (2)

where ρS = cST 11 is the energy density of the supergravity gas. The coeffi-
cient cS is computed in appendix A, and the equation of state fixes pS = 1

d
ρS .

The M2-brane gas consists of 2-dimensional membranes, each of which
is wrapped around a 2-cycle inside the T 10. These wrapped branes are thus
topologically stable. There are 45 (= 10×9/2) independent ways to wrap the
2-branes, so we effectively have 45 distinct species of branes in our model.
The universe is spatially compact, so to satisfy Gauss’ law we must have
equal numbers of branes and antibranes on each 2-cycle.
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Note that we are ignoring the possibility of having “diagonally wound”
branes, which wrap on non-trivial linear combinations of the basic (ij) ho-
mology cycles. This is required by our metric ansatz (1) which describes
a rectangular torus. Under time evolution such a torus is compatible with
having branes wound in the (ij) directions, but not with having diagonally
wound branes, whose tension would cause the torus to tilt.

The brane energy density gets contributions from two sources: the brane
tension and the energy in transverse brane fluctuations. We ignored the
latter contribution in Ref. [12] since it is negligible at late times, but we
must include it here. We describe the wrapped branes using the leading
long-wavelength approximation to the Nambu-Goto action, and thus model
the transverse fluctuations as a non-interacting gas of massless particles living
on the brane. The entire brane can also move in the transverse directions, but
we assume that this motion is non-relativistic. The brane is thus effectively
at rest, so its kinetic energy is negligible compared to its rest mass and can
be ignored.

For a brane at rest wrapped once around the (12) cycle and smeared over
the eight transverse dimensions, the contribution to the stress tensor from
the brane tension is

T µ
ν = − T2

vol⊥
diag(1, 1, 1, 0, . . . , 0), (3)

where T2 is the brane tension and vol⊥ = exp
∑10

i=3 λi denotes the volume
perpendicular to the brane. Similarly, for the worldvolume gas on the brane

T µ
ν =

1

vol⊥
diag(−ρX , pX , pX , 0, . . . , 0), (4)

where ρX = cXT 3 is the energy density in the fluctuation gas. The coefficient
cX is computed in appendix A. The equation of state for a gas in two spatial
dimensions fixes pX = 1

2
ρX .

Combining these expressions we can write down the energy density for
this universe:

ρ = cST 11 +
1

V

∑

i6=j

Nij(T2 + cXT 3)eλi+λj . (5)

Here Nij for i > j is the number of branes wrapped on the (ij) cycle, Nji =
Nij is the number of antibranes, and V = e

∑

λi is the total volume of the
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torus. Likewise the pressure on the ith dimension is

pi =
1

d
cST 11 +

1

V

∑

k 6=i

(Nik + Nki)

(

−T2 +
1

2
cXT 3

)

eλi+λj . (6)

The relevant Einstein equations are derived in appendix B. They take the
form of a Hamiltonian constraint (the analog of the Friedmann equation)

1

16πG

∑

i6=j

λ̇iλ̇j = ρ (7)

along with a set of dynamical equations of motion

λ̈i + (
∑

k

λ̇k)λ̇i = 8πG

(

1

d − 1
ρ + pi −

1

d − 1

∑

k

pk

)

. (8)

3 Brane gas thermodynamics

In this section we work out the statistical distribution of scale parameters
λi, velocities λ̇i and wrapping numbers Nij when the system is in thermal
equilibrium.

3.1 Empty universes

We start with the trivial case of an empty universe, with no supergravity
gas and no branes, and begin by setting up the canonical formalism. For the
metric (1), the curvature scalar is

R = −2
∑

i

λ̈i − 2
∑

i

λ̇2
i −

∑

i6=j

λ̇iλ̇j (9)

and the Einstein-Hilbert action is

S = − 1

16πG

∫

d11x
√−g R

= − 1

16πG

∫

dt V
∑

i6=j

λ̇iλ̇j (10)
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where V = e
∑

i λi and we have integrated by parts in the second line. The
canonical momenta πi are given by

πi =
∂L
∂λ̇i

= − V

8πG

∑

j 6=i

λ̇j (11)

and the Hamiltonian is

Hgravity =
∑

i

πiλ̇i − L = − V

16πG

∑

i6=j

λ̇iλ̇j . (12)

The equations of motion one obtains from the action (10) or the Hamiltonian
(12) do not completely reproduce the Einstein equations, since our metric (1)
fixes a choice of gauge gtt = −1. Varying gtt gives the time-time component
of the Einstein equations, which is a constraint that must be imposed on
the initial conditions. One can check that this constraint is equivalent to
requiring that the Hamiltonian vanishes, Hgravity = 0. This condition is, of
course, expected in a spatially compact universe. With this constraint the
equations of motion that follow from the Hamiltonian (12) are equivalent
to the usual Einstein equations. This constraint has been interpreted to
mean that the “wave function of the universe” should satisfy HgravityΨ = 0
[13, 14, 15].

Now consider the equilibrium distribution of states for an empty uni-
verse. Quantizing the system semiclassically, and assuming that all zero-
energy states are equally likely, the volume of phase space available to the
system is

Γ =

∫

ddπ ddλ

(2π)d
δ(Hgravity) . (13)

This is nothing but the microcanonical ensemble of classical statistical me-
chanics. It is more transparently written in terms of the radii Ri = 1

2π
eλi

as

Γ =
1

4πG

∫

ddπ ddR δ
(

∑

i

π2
i −

1

d − 1
(
∑

i

πi)
2
)

. (14)

Note that the radii are uniformly distributed from zero to infinity. That is, in
equilibrium the typical universe has very large volume and is very anisotropic.
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3.2 Adding matter

We consider three different matter contributions to the energy of the system,
namely

Ematter = ES + ET + EX (15)

arising from the supergravity gas, brane tension, and excitations on the
branes, respectively (note the slight abuse of the term ‘matter’ to include
the radiation-like supergravity gas). At temperature T the energy and en-
tropy of the supergravity gas are given by

ES = cSV T 11

SS =
11

10
cSV T 10 . (16)

The coefficient cS is worked out in appendix A. For branes at rest the energy
due to brane tension is

ET = T2

∑

i6=j

Nije
λi+λj (17)

while the energy and entropy due to a massless gas of excitations on the
branes are given by

EX =
∑

i6=j

NijcXeλi+λjT 3

SX =
∑

i6=j

Nij
3

2
cXeλi+λjT 2 . (18)

The coefficient cX is worked out in Appendix A.
The above expressions for the energy and entropy of massless particles

are only exact in the thermodynamic limit. But fortunately there are enough
massless quanta in the early universe for these expressions to be precise. The
thermodynamics of the branes, on the other hand, is more subtle, because
the universe may contain only a small number of branes at early times,
and moreover the branes that we do have are divided into 45 different sub-
populations, labelled by the directions (ij) on which they are wrapped. Thus
we need to allow for thermal fluctuations in the brane wrapping numbers Nij .

To do this we study the probability distribution for the combined matter–
gravity system. The volume of phase space is

Γ =

∫

ddπ ddλ

(2π)d

∑

Nij

∫

dEmattere
Smatterδ(Hgravity + Ematter) . (19)
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Note that this expression corresponds to the microcanonical ensemble of
statistical mechanics, since the δ-function enforces the constraint that the
total energy in the universe must be zero. Given that Ematter > 0, we must
have Hgravity < 0, which is possible since the gravitational Hamiltonian (12)
is unbounded below. To avoid a possible confusion, note that in (19) we are
regarding Smatter as a function of Ematter, as appropriate when working in the
microcanonical ensemble. That is, in (16) and (18) we regard T merely as
a convenient control parameter, which we will determine shortly in terms of
Ematter.

Using the δ-function to evaluate the integral in (19) gives our final re-
sult for the distribution of radii, velocities and wrapping numbers. Up to
inessential numerical factors

Γ =

∫

ddλ ddλ̇
∑

Nij

V deSmatter . (20)

In this expression the matter entropy is

Smatter =
11

10
cSV T 10 +

∑

i6=j

Nij
3

2
cXeλi+λjT 2 (21)

where temperature is fixed by the Hamiltonian constraint

Hgravity + Ematter = 0 .

Written out explicitly this constraint reads

− V

16πG

∑

i6=j

λ̇iλ̇j + cSV T 11 +
∑

i6=j

Nij

(

T2 + cXT 3
)

eλi+λj = 0 . (22)

Incidentally, it is easy to show that the volume of the universe increases
monotonically, by rewriting the Hamiltonian constraint as

(

V̇

V

)2

=
∑

i

(λ̇i)
2 +

16πGEmatter

V
≥ 0 . (23)

3.3 Maximum entropy configurations

The distribution (20) is dominated by configurations which maximize Smatter.
We now turn to the problem of identifying these equilibrium configurations.
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We will hold the radii of the torus fixed, so the quantities we can vary are
the wrapping matrix Nij and the temperature T . Introducing a Lagrange
multiplier µ to enforce the Hamiltonian constraint, we wish to extremize

Smatter − µ

(

Ematter −
V

16πG

∑

i6=j

λ̇iλ̇j

)

(24)

with respect to T , Nij and µ. Extremizing with respect to T yields

µ =
∂Smatter

∂Ematter

∣

∣

∣

∣

λi

≡ 1

T
(25)

so that (24) is proportional to the free energy. Extremizing with respect to
Nij yields an equation that fixes the temperature of the universe:

cX

(

3

2
T 2 − µT 3

)

− µT2 = 0

⇒ T = TH ≡
(

2T2

cX

)1/3

. (26)

We will refer to TH as the M-theory Hagedorn temperature, for reasons we
discuss in more detail in the next section. Finally extremizing with respect to
µ enforces the Hamiltonian constraint (7), which fixes the equilibrium total
area in membranes to be

Neq ≡
∑

i6=j

Nije
λi+λj =

V

3T2

(

1

16πG

∑

i6=j

λ̇iλ̇j − cST 11
H

)

. (27)

The velocities λ̇i decrease as the universe expands. At some point the equi-
librium area in membranes goes to zero. Beyond this point the right hand
side of (27) becomes negative, which simply means that no branes are present
in equilibrium.1 In this regime only the supergravity gas remains in thermal
equilibrium, with a temperature that monotonically drops below TH .

To move from the equilibrium total area (27) to the equilibrium wrapping
matrix itself we assume that, on average, the membrane area gets equally

1Of course branes which have dropped out of equilibrium may be present at arbitrarily
late times.
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distributed among all the 2-cycles. Thus the equilibrium number of branes
wrapped on the (ij) cycle is

{Neq}ij =
1

d(d − 1)
Neqe

−λi−λj . (28)

Note that in equilibrium large dimensions are wrapped by fewer branes than
small dimensions.

4 Limiting temperatures in M-theory

We denoted the critical temperature found in the previous section by TH =
(2T2/cX)1/3. Using T2 = 1/(2π)2 and the value of cX from appendix A, this
temperature has the numerical value (we usually set M11 = 1)

TH = (28πζ(3))−1/3 M11 (29)

≈ 0.211473 M11 .

This is very close to the M-theory critical temperature found by Russo [16]
after a much less heuristic calculation. Our result differs from Russo’s by
a factor of 21/3 ≈ 1.2599. We discuss this discrepancy in more detail in
appendix C. In any case we interpret TH as the M2-brane limiting tempera-

ture, in the same sense that the Hagedorn temperature is the string limiting
temperature.

The physics behind this Hagedorn behavior is simply that branes can be
created from the thermal bath. Suppose we start at low temperature and
increase the matter energy density. The temperature of the universe will rise
to TH then stay there.2 As the matter energy density increases further, the
extra energy will be pumped into the creation of M2-branes. Thus the brane
number density will increase while the energy density of the supergravity gas
stays fixed. Conversely, if the universe starts out in this Hagedorn phase,
the matter energy density decreases as the universe expands. A point will
be reached at which the equilibrium Nij drop to zero and the configuration
consists entirely of supergravity gas. Beyond this point ρ ∼ ρS ∼ T 11, so for
the energy density to drop further the temperature must drop.

2We are implicitly assuming that the specific heat does not diverge too rapidly as
T → TH . In string theory this assumption was studied in [7].
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To be complete, we mention another limiting temperature, associated
with the presence of M5-branes. These are not important for the late-time
dynamics of [12] because they intersect and annihilate quickly in the 10
spatial dimensions of M-theory, but their presence at early times implies a
limiting temperature (T5 = M6

11/(2π)5):

TM5 =

(

5T5

c′X

)1/6

(30)

=

(

15

16π8

)1/6

M11

≈ 0.215012 M11

Note that TH ≈ TM5. We do not believe that there are two limiting temper-
atures, one for M2-branes and one for M5-branes, and it is just coincidence
that they happen to be nearly identical. Rather we conjecture that these
are indications of a single M-theory limiting temperature TM ≈ 0.2M11. We
believe that a full understanding of M-theory (including higher-order cor-
rections to the supergravity action we are studying here) will produce the
corrections necessary for the two temperatures to coincide. Indeed, since
both temperatures were computed only at lowest order, it is remarkable they
agree this well. We leave this as a significant open problem.

Finally, it is interesting to compare our M-theory results to the limiting
temperature expected in string theory. In general some of the M2-branes
could be wrapped around directions whose scale factors eλi and eλj differ
significantly from one another. When both scale factors are large we expect
(29) to be a reasonable estimate for the limiting temperature. But when one
scale factor becomes small the membrane can be modelled as a string, with
the small dimension playing the role of the dilaton. For type II strings the
limiting Hagedorn temperature is (expressed in M-theory units)

TH =
(

π
√

8α′
)−1

=
1

π
√

8

√

R10M
3/2
11 (31)

where R10 is the radius of the small dimension. The true limiting temperature
should interpolate between these two extremes; it would be interesting to
study this in more detail.
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4.1 Thermodynamics and cosmology in the Hagedorn

phase

We now consider the evolution of a universe in the Hagedorn phase. For
simplicity we specialize to the case of an isotropic torus (all λi equal). The
“brane area density” is

n =
total area in wrapped branes

total volume of the universe
=

Neq

V
(32)

where Neq is given by equation (27). This must be positive, which requires

λ̇ >

(

16πGcST 11
H

d(d − 1)

)1/2

≈ 0.502 in Planck units. (33)

Thermodynamics in the Hagedorn phase is straightforward. As always, the
energy density is fixed by the Hamiltonian constraint,

ρ = cST 11 +
1

V

∑

i6=j

Nij(T2 + cXT 3)eλi+λj =
d(d − 1)

16πG
λ̇2 (34)

In general the pressure is given by (6). At the Hagedorn temperature the
positive pressure due to excitations on the branes exactly cancels the negative
pressure due to brane tension.3 Thus the pressure

p =
1

d
cST 11

H (35)

is isotropic and comes only from the supergravity gas. Finally the entropy
density is given by

s =
1

TH

(

1

d
cST 11

H +
d(d − 1)

16πG
λ̇2

)

. (36)

To determine the evolution of the scale factor we proceed in the usual way.
For an isotropic universe energy conservation requires

d
(

ρedλ
)

= −pd
(

edλ
)

. (37)

3This can be understood by noting that for an extensive thermodynamic system the
pressure is (minus) the free energy density. The latter quantity vanishes for branes at the
Hagedorn temperature.
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The pressure is constant, so this implies

ρ + p =
const.

edλ
. (38)

Plugging this result into the Hamiltonian constraint (34) gives a differential
equation for the scale factor. The general solution is

eλ(t) = const. sin2/d

(

t

2

√

16πGdp

d − 1

)

(39)

where we have fixed initial conditions λ → −∞ as t → 0.
This result looks a little odd, but it is only valid when the universe is in

the Hagedorn phase (T = TH), so it cannot be interpreted as an oscillatory
universe. Having found the exact solution, it’s actually an excellent approxi-
mation to neglect the pressure. Recall that the brane gas does not contribute
to the pressure, so in the Hagedorn phase we have an inequality

p = pSUGRA =
1

d
ρSUGRA ≤ 1

d
ρ (40)

In this approximation the universe is filled with pressureless dust, and the
scale factor has the usual matter-dominated form eλ(t) = const. t2/d.

5 Brane annihilation

We now look at interactions between the branes and the supergravity gas,
which communicate via the reaction

M2−brane + M2−brane ↔ SUGRA particles . (41)

For thermodynamic equilibrium the interaction rate must be sufficiently high,
which means the branes must be able to meet in the transverse dimensions.
Hence interactions will be suppressed if the transverse dimensions are big,
as discussed in [7, 8]. When the interaction ceases, the branes are “frozen
in,” and will remain wound for the remainder of the cosmological evolution.
This process is exactly analogous to the freeze-out of dark matter in standard
cosmology.

To describe this process quantitatively we need the cross-section for brane-
antibrane annihilation. It is not clear how to calculate this from first princi-
ples in M-theory. For inspiration we turn to an analogous process in string
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theory, namely the annihilation of two fundamental strings wound on a torus
with opposite orientations. The basic process was studied by Polchinski [17];
for more details on the following calculation the reader should consult his pa-
per. For two strings moving in the x1 direction and wrapped with opposite
orientations on x2 the center-of-mass momentum and winding vectors are

pµ
1 = (E, Ev, 0) ℓµ

1 = (0, 0, L2)

pµ
2 = (E,−Ev, 0) ℓµ

2 = (0, 0,−L2)

where Li denotes the size of the torus in the xi direction. Thus

sR = −(p1R + p2R)2 =
L2

2

4π2(1 − v2)
(42)

where pµ
R = pµ + 1

4π
ℓµ. Following Polchinski [17], the annihilation probability

during a collision is given by the optical theorem

prob. =
1

v
ImTii =

1

4E2v

(κ2

2π

)4 16π3

κ2
2

ImI(sR, tR = 0) (43)

where κ2
2 is the 1+1 dimensional gravitational coupling and the imaginary

part of the Shapiro-Virasoro amplitude is ImI(sR, tR = 0) = 2π2s2
R. The

strings collide repeatedly, since x1 direction is periodic, so it is more conve-
nient to work in terms of the annihilation probability per unit time

prob.

time
=

2T1κ
2
10

L1 · · ·L9
L2

2f(v) f(v) =
2

1 − v2
. (44)

We inserted a factor of 4πT1 on dimensional grounds, where T1 is the funda-
mental string tension, and expressed the result in terms of the 9+1 dimen-
sional gravitational coupling κ2

10 = κ2
2L2 · · ·L9. The key qualitative features

are that the annihilation rate is proportional to the gravitational coupling,
inversely proportional to the volume of the torus, and proportional to the
square of the length of the wound strings.

We assume that the annihilation rate for two oppositely-oriented mem-
branes has similar qualitative features. We write it as

prob.

time
=

2T
4/3
2 κ2

11

V
A2f(v) (45)

where A is the area of the wrapped membranes and V is the volume of the
torus. The peculiar fractional power of the membrane tension is required on
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dimensional grounds. The string result suggests that f(v) = 2/(1−v2); since
we are interested in slowly moving membranes we will take f(v) ≈ const. ≈ 2.

It is straightforward to promote the two-membrane annihilation rate (45)
to a Boltzmann equation governing the evolution of the brane wrapping ma-
trix Nij.

d

dt
Nij = −16πG T

4/3
2 f e2(λi+λj)

V

(

(Nij)
2 − (N eq

ij )2
)

. (46)

Here N eq
ij is the equilibrium wrapping matrix (28), and we have used 2κ2

11 =
16πG. Branes wrapped on the (ij) directions will freeze out when their
annihilation rate

Γij =
16πG T

4/3
2 f e2(λi+λj)Nij

V
(47)

is small compared to the Hubble rate, Γij ≪ H . Note that we take Γij to be
proportional to Nij , not N eq

ij , so that we get a sensible annihilation rate even
when N eq

ij = 0. In practice we say that freeze-out occurs when the largest
Γij < 0.01H .

We conclude with a few comments on these results. First, note that
both the string and membrane annihilation rates (44), (45) are compatible
with the dimension-counting arguments of Brandenberger and Vafa [7]. For
example, if three dimensions of the torus become large then strings wrapped
on the large dimensions will still be able to annihilate: due to the factor of
L2

2 upstairs in (44), the wound strings effectively behave like point particles
moving in one large spatial dimension. Likewise, if five dimensions become
large membranes wrapped on the large dimensions will behave like point
particles moving in one big dimension, and thus will still be able to annihilate.

Also note that we have ignored diagonally-wound membranes. Mem-
branes wrapped on the (ij) and (kl) cycles could interact, and indeed could
lower their energy, by merging to form a single membrane wrapped on the
linear combination (ij) ⊕ (kl). Such diagonally-wound membranes are not
compatible with our metric ansatz, for reasons discussed in section 2. More-
over, reactions such as (ij)+(kl) → (ij)⊕(kl) do not get rid of any conserved
winding numbers, unlike the annihilation to supergravity particles which we
considered above. So we do not expect that including diagonally wound
membranes would qualitatively affect the nature of our results.
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6 Numerical simulation

We are now in a position to solve the combined Einstein-Boltzmann equations
(8) and (46). We have implemented the equations in a Fortran code,
allowing us to consider the evolution of λi and Nij for many different sets of
initial conditions.

At the level of supergravity, we might expect initial conditions to be
drawn at random from a probability distribution corresponding to the phase
space volume derived in section 3.2.

Γ =

∫

ddλ ddλ̇
∑

Nij

V deSmatter (48)

This amounts to assuming that no state in the early universe is a priori

special. In practice, however, we must place some restrictions on the states
we consider. The first restriction is that we must fix the initial volume of the
universe. That is, we sample from the distribution (48) on a hypersurface
with a fixed value of log V =

∑

i λi. In principle this might not seem like a
serious restriction. The volume increases monotonically with time, as shown
in (23), so this is equivalent to choosing an initial instant of time. However in
practice our results will depend rather sensitively on the instant of time when
we first assume that semiclassical M-theory is valid and that the universe is
in thermal equilibrium.

A second restriction arises because our action is only a low energy approx-
imation to M-theory, so it only makes sense to begin studying the evolution
at a moment when this approximation is reasonable. The low-energy ap-
proximation is valid when all length scales in the problem are larger than
the Planck scale. We actually have two length scales associated with each
direction – the physical size eλi , and the “Hubble length” 1/λ̇i.

The choice of a minimum physical size is not particularly crucial; for
simplicity we will assume that we can trust our action when all λi > 0. The
choice of a minimum Hubble length is somewhat more subtle. In sampling
from the distribution (48) our results will be dominated by configurations
which maximize Smatter. Given the entropy density in the Hagedorn phase
(36), note that Smatter is proportional to the volume (which we are holding
fixed) but is also an increasing function of

∑

i6=j λ̇iλ̇j. Thus for entropic

reasons our results will be dominated by configurations in which all λ̇i are
equal and as large as possible (equal to the maximum allowed value). In a
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way this is very encouraging, since it means it is natural for the universe
to start out in the Hagedorn phase. We will study the dependence on the
initial velocities below, and find that the exact choice of cut-off doesn’t make
a significant difference, provided the initial λ̇i are large enough that the
universe begins at the Hagedorn temperature.

For given values of λi and λ̇i we also need to specify the matter content.
Assuming we begin in the Hagedorn phase, the behavior discussed in section
4 means the energy density of the supergravity gas is equal to cST 11

H . Any
additional contribution to the energy budget of the universe will be supplied
by branes. The equilibrium total area in branes is given in (27), so the
only remaining question is how to distribute this area across the different
wrapping modes. We do this by assuming a uniform distribution for the
wrapping numbers Nij , subject only to the constraint (27).

We now look at two different sets of solutions. In the first set we start
with all λ̇i = 1, and vary the initial volume of the universe. In the second set
we fix the initial volume and vary the initial velocities. In both cases we are
interested in determining the number of directions that are unwrapped at
late times. Our prescription is that we round the wrapping numbers Nij to
the nearest integer at freeze-out. Thus we say the i-th direction is unwrapped
if Nij < 0.5 for all j 6= i at the time of freeze-out.

6.1 Volume dependence

We begin by studying how the number of unwrapped dimensions at freeze-
out depends on the initial volume. To do this we select the λi at random,
subject to the constraint that λi > 0 and that log V =

∑

i λi = constant.

We take all initial velocities λ̇i equal to unity, and distribute the wrapping
numbers as described above.

As can be seen in Figure 1, larger initial volumes mean fewer unwrapped
dimensions at late times. This can be understood as follows. For fixed λ̇
the total area in branes at the start of the simulation, given by (27), is
proportional the volume V . If we assume a roughly isotropic universe then
the expected number of branes in each wrapping state Nij ∼ V 4/5, as can be
seen in (28). Thus larger initial universes will have larger initial wrapping
numbers. At the start of the simulation the annihilation rate (47) scales like

Γij ∼
1

V 3/5
Nij ∼ V 1/5 . (49)
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Figure 1: Probability distribution for the number of unwrapped dimensions
at freeze out, for four different choices of the initial volume. The number of
unwrapped dimensions is indicated on the horizontal axis. Each histogram is
a Monte Carlo based on 103 different sets of initial conditions. Note that it’s
impossible to have nine unwrapped dimensions, since the wrapping matrix
is symmetric.
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Figure 2: Mean number of unwrapped dimensions at freeze-out (y-axis) ver-
sus log of the initial volume (x-axis).

Thus larger universes are initially more efficient at getting rid of their branes.
But as the wrapping numbers drop the V −3/5 prefactor in the annihilation
rate wins out, and larger universes ultimately find it more difficult to get rid
of their branes before freeze-out.4 Conversely, if the universe starts with a
small initial volume the initial wrapping numbers will be small. One could
easily have all Nij < 0.5, in which case we would regard the initial state as
having no branes present.

Looking at Figure 1, we see that the initial volume determines the distri-
bution of dimensionality. For very small volumes, the branes always annihi-
late before freeze-out and all ten dimensions unwrap. For large volumes all
directions tend to be wrapped at freeze-out. Figure 2 shows the transition
between these two extremes, by plotting the mean number of unwrapped
directions at freeze-out as a function of the initial volume.

6.2 Velocity dependence

The dependence on initial velocity is much weaker than the dependence on
initial volume, provided the universe is expanding fast enough (and thus has

4The time to freeze-out is roughly independent of the initial volume and thus does not
affect this conclusion.
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Figure 3: Probability distribution for the number of unwrapped dimensions
at freeze out for two different choices of the initial velocity. The initial
conditions are all λ̇i = 0.55 (left plot) and all λ̇i = 1 (right plot). In both
plots the initial volume is fixed to log V = 20. The plots are Monte Carlos
based on 103 different sets of initial conditions. There is relatively weak
dependence on the initial velocity, as long as λ̇ is large enough to start in the
Hagedorn phase.
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Figure 4: Mean number of unwrapped dimensions at freeze-out (y-axis) ver-
sus initial velocity (x-axis).
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sufficient energy) to be in the Hagedorn phase when the simulation begins.
We take all λ̇i to be identical at the outset, and choose the values of λi

randomly, subject only to the volume constraint. Figures 3 and 4 show that
the distribution in the number of unwrapped dimensions at freeze-out only
depends weakly on the initial velocity. Note that the left hand panel in Figure
3 shows the distribution for initial velocities which are only marginally above
the value (33) needed to ensure we start in the Hagedorn phase. In Figure
5 we show the dependence of the mean number of unwrapped dimensions
on both the initial radii and velocities. One can see both the onset of a
Hagedorn phase at λ̇ ≈ 0.5, and the volume dependence of the final number
of unwrapped dimensions.

6.3 Summary

From these numerical results we see no evidence for a preferred number of
unwrapped dimensions at late times. Rather the wrapping numbers at freeze-
out depend on the initial conditions. We therefore cannot uniquely predict
the effective dimensionality of the universe at late times, although we can
assign a probability to different final states.

We can ask what parameters determine the final state. Provided the
initial volume is large enough, the most important factor determining the
number of unwrapped directions at freeze-out is the anisotropy in the initial
values of the λi. We verified this by running the code for the same set of
λi and different values of the Nij (chosen randomly, as outlined above), and
found that for sufficiently large log V the same set of λi typically produced
the same number of the unwrapped directions, independent of the values of
the Nij.

Consequently, if we want to sharpen our prediction for the number of
unwrapped dimensions, we must constrain the initial conditions. A similar
problem arose in the original work of Brandenberger and Vafa [7], where it
was argued that a thermal fluctuation could produce a universe with either
one, two, or at most three large dimensions. In the Brandenberger-Vafa sce-
nario one could imagine deploying an anthropic argument to argue against
observation of less than three dimensions.5 Rather than pursue anthropic
arguments, in the next section we turn our attention to a rationale for re-
stricting the space of initial conditions, namely insisting that the initial state

5For a dynamical approach see [4].
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Figure 5: This contour plot shows the mean number of unwrapped dimensions
as a function of both the log of the initial volume (y-axis) and the inverse
initial velocity 1/λ̇i ≡ 1/H (x-axis). For each run the initial λi are chosen
randomly, but the initial λ̇i are all identical. There is little dependence on
1/H , provided we are in the Hagedorn phase to begin with (λ̇ > 0.502). The
darkest shading corresponds to a mean number of unwrapped dimensions
less than unity, while the lightest shading corresponds to a mean of 10 (fully
unwrapped).
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of the universe be consistent with holography.

7 Holography and initial conditions

The holographic principle [18, 19] is thought to be a fundamental property
of quantum gravity. Loosely speaking, it requires that the number of degrees
of freedom in a given volume scale like the surface area. But so far we
have treated M-theory semi-classically. In this approximation the number of
degrees of freedom is extensive in the volume, so we run the risk of violating
holography.

We now apply the holographic principle to brane gas cosmology. For
simplicity we specialize to the case of a square torus (λ1 = · · · = λ10 = λ) with
uniform wrapping (Nij = N for all i 6= j). We will argue that holography is
satisfied provided we put restrictions on the initial conditions. By combining
holographic bounds with entropy arguments, we will argue for a preferred
set of initial conditions for the universe. Moreover these preferred initial
conditions have the right qualitative features to drive the brane gas scenario.

7.1 Holographic bounds

The holographic principle was first applied to cosmology in [20, 21, 22, 23].
We will use the covariant form of the entropy bound developed in [24, 25] to
obtain limits on the initial size of the universe. Our analysis closely follows
section 3.4 of [25].

In the brane gas scenario one expects that at early times the universe is
in a Hagedorn phase, with scale factor eλ ∼ t2/d. At intermediate times there
could be a radiation-dominated phase, with scale factor ∼ t2/(d+1). Finally at
late times the universe is dominated by brane tension; for uniform wrapping
this means eλ ∼ t2/(d−2) [12]. Thus to a good approximation throughout its
history the universe has a flat FRW metric with a power-law scale factor.

A flat FRW universe has an apparent horizon at a proper radius dAH =
1/λ̇ [23]. Holography requires that the entropy inside a spherical volume of
radius R < dAH be bounded by A/4G. That is, for a given entropy density
s the radius must satisfy

sV ≤ A/4G (50)
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or equivalently

R ≤ Rmax =
d

4Gs
(51)

where we have used the relation V = RA/d appropriate to a sphere in d
dimensions. If the sphere is larger than the apparent horizon R > dAH then
holography puts no restrictions on the allowed entropy [25].

The entropy density in the Hagedorn phase is given in (36), while in the
radiation-dominated phase the entropy density comes just from the super-
gravity gas:

s =
d + 1

d
cST 10 =

d + 1

d
cS

(

d(d − 1)

16πGcS
λ̇2

)10/11

. (52)

Thus the holographic bound on the radius is

Rmax =











d2

4G(d+1)cS

(

d(d−1)
16πGcS

λ̇2
)−10/11

λ̇ < 0.502

dTH

4G

(

1
d
cST 11

H + d(d−1)
16πG

λ̇2
)−1

λ̇ > 0.502
(53)

For λ̇ < 0.234 it turns out that Rmax is larger than the radius of the apparent
horizon dAH , so holography puts no restriction on the physical volume of the
universe. For λ̇ > 0.234, on the other hand, Rmax is smaller than dAH and
we must limit the size of the universe to satisfy eλ ≤ 2Rmax. These bounds
are illustrated in Fig. 6.

7.2 Holography and initial conditions

We conclude with some speculation about holography and the choice of ini-
tial conditions for the universe. The basic point is very simple. Fischler and
Susskind have shown that the holographic principle is satisfied in the universe
today [20]. Moreover Flanagan, Marolf and Wald have shown that if holog-
raphy is satisfied at some instant of time then it will be satisfied both in the
future and (by time reversal) in the past, up to the point where semiclassical
general relativity breaks down [26]. Evolving our universe backwards in time,
this means the holographic bound must be satisfied until general relativity
breaks down. This would occur when either the volume is too small (eλ ∼ 1)
or the Hubble parameter is too large (λ̇ ∼ 1). These bounds are indicated
by the dotted lines in Fig. 6.
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Figure 6: Bounds on the size of the universe as a function of 1/H ≡ 1/λ̇.
The red curve is the holographic bound 2Rmax, the straight blue line is the
diameter of the apparent horizon 2/λ̇, and semiclassical gravity breaks down
at the dotted black lines. In the green shaded region the universe satisfies
the holographic bound and is in the Hagedorn phase.
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Thus the universe must have originated from the horizontal dotted line in
Fig. 6, somewhere to the right of the holographic bound. Now consider the
expression for the entropy density in the Hagedorn phase (36). The entropy
density is an increasing function of λ̇, and the total volume is fixed. Thus
on entropic grounds the preferred initial conditions for the universe saturate

the holographic bound at the point where general relativity breaks down. This
behavior was first noted in [20]. Here we are arguing that it is a general
feature.

If this argument is correct, the preferred initial conditions for the uni-
verse have the right qualitative features to drive brane gas cosmology: the
universe begins with a small initial volume and large initial Hubble param-
eter (or equivalently a large initial energy density). The numerical values
suggested by our analysis are discouraging, unfortunately: the preferred ini-
tial conditions are roughly λ = 0 and λ̇ = 3/4. Comparing Figures 5 and
6, we see that the the Hagedorn region identified in Figure 6 is corresponds
to a volume too low to even be plotted in Figure 5. Given such small ini-
tial volumes very few branes are present in the initial state. Thus the most
likely evolution of the universe leads to ten unwrapped and roughly isotropic
dimensions.

On the face of it, this is an extremely discouraging result for the brane gas
scenario, as it appears to imply that the initial number of wrapped branes
is very small – effectively one is starting from a brane gas without branes.
However there are several reasons for qualifying this conclusion. First, the
comparison of initial volumes is sensitive to O(1) numerical coefficients. Our
use of a low-energy supergravity action seems to capture the right qualitative
behavior of the Hagedorn phase, but we do not expect it to precisely capture
all numerical coefficients. For example our estimate of the M-theory Hage-
dorn temperature is only an estimate, which surely receives O(1) corrections.
Indeed we expect such corrections in order to get the M2 and M5 critical tem-
peratures to agree. Likewise our estimate for the Hagedorn equation of state
presumably receives O(1) corrections.

A more fundamental issue is that our discussion of holography assumed
an isotropic torus, while the brane gas scenario relies on an initial anisotropy
to seed the asymmetric growth of dimensions. It would thus be interesting to
study holographic bounds on an anisotropic torus. Indeed there is reason to
think that in the limit of extreme anisotropy, where M-theory reduces to IIA
string theory, the holographic bound could be less restrictive, simply because
the holographic bound involves the Planck length while the entropy density
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in the stringy Hagedorn phase is set by the string scale.
We should also consider the impact of inhomogeneity on our analysis.

Following Easther and Lowe [21], we can regard the holographic bound as a
manifestation of the generalized second law of thermodynamics. From this
perspective, which takes a more limited view of holography than positing it
as a key feature of some underlying fundamental theory, violations of the
holographic bound are only important if they can be exploited to form a
black hole that contains less entropy than the material used to create it – thus
violating the generalized second law. While investigating an inhomogeneous
11 dimensional spacetime is a forbidding prospect, we can perform a rough
check by asking whether a Schwarzschild black hole with a mass equal to the
entire energy budget of the universe would fit neatly inside our torus. For
a universe in the Hagedorn phase the answer is “no,” which suggests that
homogeneity is not such a bad assumption.6

Even if a more detailed analysis of holography made it possible to decom-
pactify three dimensions, we would still be faced with a fine-tuning problem.
That is, our analysis shows that in the M-theory context the initial volume
must fall within a fairly narrow window in order to have a significant proba-
bility of decompactifying three dimensions. Let us be optimistic and suppose
that by obtaining the correct numerical coefficients and including the effects
of anisotropy and inhomogeneity we would find that this window overlapped
with the holographically allowed range of initial conditions. We would still
face the difficulty that small changes in the initial volume significantly affect
the probability of decompactifying three dimensions. Part of the appeal of
the brane gas scenario was the hope that a brane gas in the early universe
would automatically lead to decompactification of three dimensions. In the
M-theory context this hope is not realized.

8 Conclusions

In this paper we extended the brane gas scenario in several directions. We
gave a simple estimate of the Hagedorn temperature for 2-branes, and inves-
tigated the properties of a universe dominated by a Hagedorn gas of 2-branes.
We estimated the cross-section for interactions between the branes and the
SUGRA gas, showing that annihilation of branes becomes less efficient as
the universe expands. Thus the branes eventually freeze out, leading to a

6We are grateful to Erick Verlinde for a valuable discussion on this point.
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relic density of winding branes at late times. We numerically solved the cor-
responding Boltzmann equations, and found that the number of “wrapped”
dimensions at late times was essentially determined by the initial volume,
provided the universe starts out in the Hagedorn phase.

We then looked more closely at constraints on the initial conditions, iden-
tifying regions of initial condition space that are compatible with the holo-
graphic bound. With this cut, we found that in order to be consistent with
holography the initial volume of the universe had to be relatively small, im-
plying that the equilibrium number of branes was also small. Comparing this
bound with the numerical work, we saw that the holographically allowed re-
gion of initial condition space typically leads to a universe in which all branes
annihilate before freeze-out, thereby leaving all ten dimensions free to expand
isotropically.

This result is noteworthy for two reasons. Firstly, it suggests that the M-
theoretic version of the brane-gas scenario cannot produce a universe with
anisotropic distributions of winding branes, and thus does not provide a
mechanism for ensuring that the universe contains a small number of macro-
scopic dimensions. Secondly, it is – to our knowledge – the first time a
holographic bound has been applied to a toroidal cosmology and, more im-
portantly, it is the first time that holographic arguments have been used to
successfully put new constraints on cosmological models.

These results come with the caveat that while the dynamics were analysed
in a fully anisotropic spacetime, the holographic argument was formulated
for an isotropic universe. It is not clear to us whether a moderate level of
anisotropy could modify the holographic constraint to the point where de-
compactification of three dimensions becomes possible. Moreover, the current
analysis involves constants of order unity that are not reliably determined,
providing another possible loophole in our conclusions. Finally, we have
assumed that the universe is homogeneous, with branes that are “smeared
out” in the transverse directions. This should be a good approximation when
dealing with a large number of branes, but the number of branes we see are
small.

At this point, however, our inclination is to take these results seriously,
and to explore their consequences. One promising possibility is to posit that
one direction of the torus is small compared to the Planck scale. This reduces
the mass of branes wrapped around the small direction – thus increasing
their equilibrium number density – while holding the overall volume fixed.
In effect, this scenario describes the stringy limit of M-theory. Our results do
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not directly apply to this regime, since our underlying supergravity action
only makes sense if all ten directions are large compared to the Planck scale.
But the technology we have developed should be applicable to string gas
cosmology, a subject we intend to analyze in the future.
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A Equations of state

Expressions for the energy densities associated with massless particles in
thermal equilibrium can be found in any statistical mechanics text. For a
relativistic gas in d spatial dimensions each degree of freedom has an energy
density

BOSON : ρb =
1

(2π)d
Sdd!ζ(d + 1)T d+1

FERMION : ρf =
1

(2π)d
Sd(1 − 2−d)d!ζ(d + 1)T d+1

There are three instances where this will be used in our work: the super-
gravity gas, the M2-brane worldvolume, and the M5-brane worldvolume. In
each application, we must remember to sum the energy densities from each
degree of freedom.

A.1 Supergravity gas

For the supergravity gas we have 128 bosonic and 128 fermionic degrees of
freedom, all massless, in 10 dimensions. So:

ρb =
4725ζ(11)

16π5
T 11 ρf =

4833675ζ(11)

16384π5
T 11 (54)
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producing

ρS = 128ρb + 128ρf ≡ cST 11, cS =
9672075ζ(11)

128π5
(55)

A.2 M2-brane gas

The M2-brane has transverse fluctuations which we model as a gas com-
posed of massless particles residing on the brane. There are 8 bosonic and 8
fermionic degrees of freedom. Thus

ρb =
ζ(3)

π
T 3 ρf =

3ζ(3)

4π
T 3 (56)

producing

ρX = 8ρb + 8ρf ≡ cXT 3, cX =
14ζ(3)

π
. (57)

A.3 M5-brane gas

M5-branes have 5 transverse coordinates, a 2-form whose field strength is
self-dual, and all their superpartners. These produce (again) 8 bosonic and
8 fermionic degrees of freedom, but now in five dimensions. Thus

ρM5 = 8ρb + 8ρf ≡ c′XT 6, c′X =
π3

6
. (58)

B Einstein equations

We begin with the metric ansatz used in [12],

ds2 = −dt2 +
d
∑

i=1

Ri(t)
2dθ2

i (59)

where the angular coordinates θi run from 0 to 2π. The Einstein tensor has
the following non-zero components

Gt
t =

1

2

∑

k 6=l

ṘkṘl

RkRl

(60)

Gi
i =

∑

k 6=i

R̈k

Rk

+
1

2

∑

k 6=l

ṘkṘl

RkRl

−
∑

k 6=i

ṘkṘi

RkRi

(61)
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(no sum on i on the second line). For future reference,

∑

i

Gi
i = (d − 1)

∑

k

R̈k

Rk

+
d − 2

2

∑

k 6=l

ṘkṘl

RkRl

(62)

The Einstein equations are

Gt
t = 8πGρ Gi

i = −8πGpi (63)

where the energy density and pressures are given in (5), (6). At this point
it is convenient to set θi = 2πxi and eλi(t) = 2πRi(t). That is, we write the
metric as

ds2 = −dt2 +

d
∑

i=1

e2λi(t)dx2
i 0 ≤ xi ≤ 1. (64)

In terms of these variables the Einstein equations are

1

2

∑

i6=j

λ̇iλ̇j = 8πGρ (65)

λ̈i +
V̇

V
λ̇i = 8πG

(

1

d − 1
ρ + pi −

1

d − 1

∑

k

pk

)

(66)

To obtain the second line it is useful to take the sum of the space-space
equations and use (62).

C Hagedorn temperatures

There is a distressing factor of 21/3 ≈ 1.26 between our limiting M2-brane
temperature and that found by Russo [16]. While such a factor would not
affect the qualitative features of our analysis, it is important to determine
the reason for the discrepancy.

In studying the membrane energy, we used the following large-winding
approximation to the membrane mass:

m ∼ T2A + (ideal gas of transverse fluctuations) .

This expression is valid at low temperature (and thus at low excitation num-
ber), but there is no reason to believe it is valid near the Hagedorn tempera-
ture. Russo identifies the critical temperature at which a membrane wound
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on the Euclidean time dimension becomes tachyonic. But unlike the present
work Russo does not expand the membrane action for large winding. We
believe this is the origin of the discrepancy.7 The complications of studying
membranes prevent us from showing this directly, but an analogous numerical
discrepancy can be seen in the following string calculation.

The (exact) bosonic string spectrum is (α′ = 1)

m2 = w2R2 + N − 4

where we let N refer to all oscillations. If we consider only unwound strings,
this means m ∼

√
N at high oscillation number, and the partition function

behaves roughly like

Z =
∑

N

d(N)e−E/T

∼
∫ ∞

0

dN e
√

N(βH−β)

which diverges for T ≥ TH . Now consider winding strings, for which a mass
approximation valid at low excitation number would be

m ∼ wR +
N

2wR
. (67)

The partition function is now roughly

Z =
∑

N,w 6=0

d(N)e−E/T

∼
∑

w 6=0

∫ ∞

0

dN exp
[√

NβH − (wR + N/2wR)β
]

∼
∑

w 6=0

ewR(β2

H
/2β−β)

which diverges for T ≥
√

2TH . This calculation is incorrect because we used
the approximation (67) for arbitrarily large N ; at any fixed w there will
eventually be an excitation number N ≫ w2R2 at which it is better to use

m ∼
√

N +
wR

2
√

N
7Both Russo and the present work ignore interactions on the membrane worldvolume.
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which will reproduce the old divergence at T = TH . Since each w term in
the partition function diverges towards positive infinity at this temperature,
the total partition function will also diverge. Thus the 21/2 discrepancy is
merely an artifact of the large winding approximation to the mass.
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